

Rideau Valley Conservation Authority

3889 Rideau Valley Drive, PO Box 599, Manotick, Ontario, Canada | 613-692-3571 | www.ryca.ca

Technical Memo

December 6, 2010

To: Bruce Reid, P.Eng. Director

Watershed Sciences and Engineering Services

From: Ferdous Ahmed, Ph.D., P.Eng.

Senior water Resources Engineer

Subject: Tay River Flood Risk Mapping from Christie Lake to Glen Tay

Staff Involved: Nazrul Howlader, Amanda Soutar, Stephanie Schreiner, Ewan Hardy,

Ahmed B. Ahmed, Ferdous Ahmed

Executive Summary

This is the project completion report of the Tay River Floodplain Mapping Project that was initiated in 2007 and completed recently (see Figure 1). This project covers the reach of the Tay River from the outlet of Christie Lake to Glen Tay Road. The mapping was done in accordance with the technical guidelines set out under the Canada-Ontario Flood Damage Reduction Program (FDRP) (MNR, 1986), and the technical guide for the flood hazard delineation in Ontario (MNR, 2002) as laid out by the Ontario Ministry of Natural Resources. This brief report documents the work done so far. A separate "documentation folder" contains all pertinent background information, data, and analyses, and is available to anyone wishing to scrutinize the details. The 1:100 year flood lines delineated here are suitable for use in the RVCA's regulation limits mapping (referred to in Section 12 of Ontario regulation 174/06) and in municipal land use planning and development approval processes under the Planning Act.

Introduction

Two previous flood mapping studies have been done on the Tay River (McCormick Rankin 1971 and FENCO 1981) in the pre-FDRP era. The McCormick study covered a 5 km reach of the river centered on the Town of Perth and was based on the available hydrological and topographical information. In the absence of streamflow data, the historical water level measurements at the Perth Basin (downstream of Gore Street) were analyzed to estimate the 1:100 year flood level and then the 1:100 year flood flow. The flood elevations were estimated by using the Manning's equation. This type of mapping will now be considered "approximate" by today's standard of floodplain delineation for regulation purposes (Conservation Ontario, 2005).

The FENCO study area extended from Glen Tay Road to the Tay Marsh. This mapping was based on good topographical data and, in the absence of sufficient hydrological data, conservative flood estimates. This pre-dates but is very close to the FDRP standards.

The McCormick mapping was superseded by the FENCO mapping, and now the latter is used for regulatory purposes by the RVCA. The need to extend the mapping both upstream and downstream of the currently mapped reach of the Tay River has been recognized for some time. In addition, a recent hydraulic analysis related to Haggart Dam concluded that the FENCO mapping is becoming obsolete and recommended that the mapping be revised to conform to present-day standards (RVCA, 2010a).

With the acquisition of accurate base mapping through the Source Water Protection funding in 2005-06 and the development of a detailed watershed model of the Tay Watershed in 2007, it became possible to embark on an FDRP-standard mapping of the Tay River from Christie Lake to Glen Tay (Figure 1).

Accordingly, RVCA began planning for a more comprehensive flood mapping. Field surveys were undertaken in 2007-08 to collect data on key cross-sections, bridge and culverts. This data was used in the flood mapping described in this report, as well as for the refinement of RVCA's watershed (Mike11) model.

High quality topography is the key to high quality mapping. Aerial photos at a 1:6000 scale were taken in May 2005 and, using them, a Digital Terrain Model (DTM) was derived in May 2006 by Base Mapping Company (see Figure 2). This DTM meets the FDRP specifications and is suitable for use in flood mapping.

The Mike11 model, originally developed in 2007 (RVCA, 2007), was updated in 2008 with new data on cross-sections, bridges and culverts. The model was thus able to simulate the river hydraulics better and this was reflected in the model performance. The long-term flow regime of the Tay River was simulated with this model and the simulated flows were used for statistical analysis and estimating design floods, which were then used in the flood mapping. The streamflow data collected at Perth and Port Elmsley was not of sufficient length and quality to conduct the typical statistical analysis to estimate design floods; hence the Mike11 model was used.

Study Area

The study area was essentially determined by the extent of the DTM (see Figures 1 and 2). At the downstream end (Glen Tay Road), the present mapping was tied to the existing mapping of the Tay River determined in 1980 (FENCO, 1981). The following streams were included in this study:

- Tay River from Christie Lake outlet to Glen Tay Road
- Scotts Snye entire stream

The entire area mapped is within the Tay Valley Township. There is no major settlement along this reach of the river, only some scattered rural residences.

Hydrological Analysis

The streamflow data collected at Perth and Port Elmsley is not of sufficient length and quality to perform a standard statistical analysis. This means that we have to estimate the design floods using other methods. We used the Mike11 model of the Tay Watershed

to generate long-term (synthetic) flows at key locations and then performed statistical analysis to estimate design flows at those locations.

Determining design floods using long-term watershed simulation is a relatively new approach that is increasingly being used around the world to estimate flows at ungaged basins where long-term climatic data is available. The advantages of this method and its recent use are described by Boughton and Droop (2003) and DEFRA (2005). Advantages of this method over the traditional event-based methods are numerous and varied. The main advantage is the automatic accounting of antecedent moisture condition at every time step, which is taken into account in event based designs but in a rather arbitrary and/or conservative way. Integrated watershed models, like Mike11 used here, can also account for the heterogeneity of basins, river and lake attenuation, varied response time of basins, water control structures and their operation policy. With the development of sophisticated watershed modeling techniques and increasing computer power, this method is now being increasingly used in Europe, Australia, United States and South Africa.

An integrated hydrologic/hydraulic model of the Tay Watershed (Figure 3) was originally developed during 2005-2006 as reported in RVCA (2007). During the fall of 2007, 16 bridges/culverts and a number of low flow channels were surveyed. With this data, the Mike11 model of the Tay Watershed was updated in 2008. The details of the model are described elsewhere (RVCA, 2007) and are not repeated here.

This updated model was used to simulate the long-term flow series for a period from 1940 through 2007. The main assumptions in the long-term simulation are:

- Beveridges Dam: A typical year (2001) of log operation is assumed to be valid throughout the simulation period.
- Bolingbroke Dam: It is assumed that the "rule curve" can be achieved every year throughout the simulation period.

These assumptions are considered reasonable and are not expected to skew the statistical analyses using model-generated synthetic flows. On the long term, the main characteristics of the dams are expected to be fairly represented.

The model computed daily time series of flow and water level along the hydrodynamic network (Figure 3). The flow data was extracted at key locations (Figure 4) and was then subjected to standard flood frequency analysis. The CFA program of Environment Canada (Pilon and Harvey, 1993) was used; various frequency distributions were visually inspected to determine the most appropriate distribution at each flow calculation nodes. The design floods with various return periods are shown in Table 1. The first two years of simulated data was ignored in the statistical analysis to avoid the effects of initial condition, thus leaving 66 years of data (1942 through 2007) for the flood frequency analysis.

When compared to other estimates (Figures 5 and 6), our estimates are much lower than the FENCO (1981) estimate and slightly higher than the Genivar (2008) estimate. The FENCO estimate was based on the 2-day snowmelt event, which produces very high basin yield (see FENCO catchments in Figure 5). However, the routing procedure FENCO used gave very high attenuation (in the order of 85-98%) along the lakes (except at the Beveridges Dam where the attenuation was about 10%). As a result, the FENCO flow estimates along the Tay River are low downstream of lake outlets (e.g., downstream of Bob's Lake at Bolingbroke and Christie Lake) and high elsewhere, especially near the outlet of individual basins (e.g., at Perth and upstream of Beveridges Dam).

The GENIVER estimates, on the other hand, are based on flow transposition from other gage locations within the Rideau watershed. These estimates are roughly 20% lower than our estimates for the 1:100 year event, but matches better for more frequent events (Figure 6). Another estimate was made using the regression equations of FDRP (1986) recommended for flood mapping. These are somewhat higher than our estimate,

Tay Mapping.doc 12/6/2010 4:31:54 PM Page 5 of 37

¹ Flood attenuation is the reduction of flood flow peak which occurs when the flood passes through a lake or a long river reach. In case of the lake, the attenuation is made possible by the large storage provided by the lake. Attenuation is generally defined as the ratio of flow reduction to the incoming flow.

² Dynamic routing by Mike11 indicates only moderate attenuation through lakes (in the order of 5-20%).

but in general show the same trend. The values were taken from a recent report (RVCA, 2010b).

Taking all into account, we consider the design flows derived form the Mike11 model, as listed in Table 1, most suitable for flood hazard mapping within the Tay Watershed. We recommend that these flows be used for flood risk limit delineation by RVCA.

The flows listed in Table 1 have been used in the hydraulic analysis for the flood mapping of the Tay River from the Christie Lake to Glen Tay Road, as described in the following pages.

Data Used for Flood Hazard Mapping

<u>Aerial photo</u>: The aerial photo was collected on May 7-8, 2005 at a scale of 1:6000. This high quality black and white photo clearly shows the rivers, creeks, land use, houses, buildings, roads, infrastructure, vegetation and other details.

<u>DTM</u>: Base Mapping Company was commissioned by RVCA to produce a DTM from the aerial photos (Figure 2) in May 2006 for flood mapping purposes according to the specifications of FDRP program (MNR, 1986). Contour lines were drawn at 1.0 m intervals with 0.5 m interpolated lines. Other standard layers showing houses, roads, depressions, etc. were also produced.

<u>Cross-Sections</u>: River and flood plain cross-sections – the basic building blocks of hydraulic models – were generated from the high quality DTM using standard GIS software. For the most part this procedure captured the floodplain as well as most of the low flow channel in sufficient detail to be used in floodplain mapping. However, in some places, a substantial portion of the low flow channel was under water and field surveys of the low flow channel were conducted to supplement the DTM-generated profile. The surveying was conducted by RVCA staff in the fall of 2007. About 120 cross-sections were used in the model.

<u>Channel Roughness</u>: Following standard procedures (Chow, 1959), the resistance of the channel under possible high water conditions was estimated from aerial photos and

occasional field inspections. The Manning's n was generally 0.035 in the main channel, and varied from 0.050 to 0.065 for the floodplains. These values were consistent with those found appropriate in earlier studies (FENCO, 1981).

<u>Measured Flow</u>: As already mentioned, the flow measurements at Perth and Port Elmsley were not directly used in the flood mapping. However, they were used only indirectly in the calibration and validation of the watershed model.

Bridges/Culverts: There are 17 bridges and culverts (Table 2) crossing the streams within the study area. Their physical dimensions and other pertinent data were collected from earlier studies (FENCO, 1981) where available, and were surveyed in the field in other cases. The survey was conducted by RVCA staff in the fall of 2007. The coefficients of contraction and expansion associated with bridges/culverts were estimated from available information using standard procedures (USACE, 1990, 2002).

Hydraulic Modeling

Following standard procedures (MNR, 1986; USACE, 1990, 2002), a steady-state hydraulic model of the Tay River and Scotts Snye was built. The HEC-RAS model (version 3.1.1) developed by US Corps of Engineers (USACE, 2002) was used. This has the same back water calculation procedure as HEC-2 (USACE, 1990) which has been the industry standard since 1970s, but with improved data processing and graphical capabilities.

About 120 cross-sections were used in the model. Distances between sections along the stream center and left and right overbanks were calculated using GIS software. Bridges and culverts were inserted at appropriate locations.

The design flows taken from the hydrologic analysis (discussed earlier), with return periods ranging from 2 to 500 years (Table 3), were used in the model. The water levels (Table 4) at the downstream end (cross-section 500) were taken or estimated from the FENCO (1981) report. The confluence and junction of the Tay River with Scotts Snye were designated as internal junctions with matching water levels in accordance with accepted procedures (USACE, 1990, 2002).

Once the model was set up, the computed profiles and other parameters were scrutinized to assess the reasonableness of model outputs. Special attention was given to the computed water level and energy profiles near bridges and culverts. Adjustments of model parameters — mainly the channel resistance and contraction and expansion coefficients — were made as necessary.

The 1:100 year computed water surface elevations and other parameters are shown in Table 5. A few typical water surface profiles and all cross-sections are included in Appendix A.

Computed water surface elevations for various flood events with return periods ranging from 2 to 500 years are presented in Tables 6a and 6b. It should be pointed out that the model has been built and tuned to simulate the 1:100 year flood levels; therefore the water surface elevations for other events – simulated using the same parameters, especially the Manning's n values – are only approximate. This is because the river roughness varies with flow magnitude, with higher resistance associated with lower flows.

In the absence of pertinent measurements, the validity of the HEC-RAS model was evaluated in two ways. First, the computed water levels were checked with those computed by the Mike11 model at several key locations (Figure 7). Please note that, in some cases, the locations were not exactly the same. Moreover, the HEC-RAS is a steady-state model where the energy equation is solved by the standard step method, whereas Mike11 is a fully unsteady model that solves the full dynamic equation. Considering these important points, the HEC-RAS simulation is seen to be corroborated well by the Mike11 simulation, often by a difference less than 10 cm.

Secondly, the stage-discharge relationship at the OMYA intake was assessed (Figure 8). The rating curve (obtained from OMYA) and the measurements on which the curve is based are compared to the rating curve that can be constructed by plotting the HEC-RAS-generated water levels against flood flows. Also plotted are the rating curves generated by the Mike11 model. At first glance, the data from the three sources do not match very well; however, this should be interpreted within the appropriate context. The vertical accuracy (or uncertainty) of the OMYA rating curve is about ± 20 cm. The

measurements are limited to low flow values within the main channel, although the extrapolation of the rating curve has been done in the overbank flow areas. The Mike11 data is pretty close to the rating curve for flows in the range from 15 to 30 cms, but lower for both smaller and higher flows. The water levels generated by HEC-RAS for lower flows might have been underestimated as a result of using the same manning's n as the 1:100 year flood. Considering all these, it is difficult to satisfactorily explain the discrepancy between the measurements and HEC-RAS points. However, the magnitude of the discrepancy is within the uncertainty (±20 cm) of the rating curve for the 1:100 year flood. This indicates that the computational error, if any, is not unacceptably high for the design event.

A sensitivity analysis of the computed water level to the design flow was conducted. The following five flow conditions were tested:

- all design flows increased by 10%
- all design flows increased by 20%
- all design flows increased by 30%
- all design flows decreased by 10%
- all design flows decreased by 20%

Figure 9 shows the computed water surface profiles and the increase in water level. Most of the change in water level occurs along the unobstructed reach of the streams. Near the bridges, the increase in water level is minimal, due to the constriction and high velocity, and thus the dominance of inertia in relation to bed resistance. However, the bridge constriction should not be counted on for the subdued change in water level, since the modification or removal of a bridge can cause the water level to bounce back to the "normal position".

The sensitivity analysis indicates that the computed water level can vary by about 20 to 30 cm for a 20% variation in flow, which is typical in hydrologic estimation of design flow. For a 30% increase in flow, the water level can go up by 40 to 50 cm at some locations. The sensitivity analysis will enable designers to take extra precaution when warranted or desired. It also gives an indication of what changes may come as a

result of any changes in flood flows (due to natural causes like climate change or manmade causes like reservoir operation).

Regulatory Flood Levels

As per Section 3 of the Provincial Policy Statement under the Planning Act (MMAH, 2005), the regulatory flood in Zone 2, which includes the RVCA, is the 1:100 year flood. The computed water surface elevation is generally taken as the regulatory flood level (RFL).

However, near bridges, culverts and other water control structures, the computed water surface elevation may be substantially lower than the energy grade, with the possibility that the water level may rise to the energy grade near obstacles and under other perturbed situations, or if the bridge is enlarged or removed. In such cases, the regulatory flood level is taken as the computed energy grade.

Another possible situation is when the water surface profile is undulant, with downstream water levels occasionally higher than upstream levels. In such cases, it is possible that the water from the (higher) downstream end backs up upstream and elevates the water level. Therefore the upstream regulatory flood level is taken as the downstream water surface elevation.

In summary, the following algorithms were followed in determining the regulatory flood level:

- By default, set RFL equal to computed water surface elevation
- If the computed water surface level is lower than the computed energy grade by more than 5 cm, set RFL equal to computed energy grade
- If the RFL at any location is lower than the RFL at the next downstream section, set the RFL equal to downstream RFL

When these rules are followed, the RFLs always fall between the water surface elevation and energy grade, are equal to the water surface elevation most of time, and are equal to energy grade some of the times. And the RFLs always decrease in the

downstream direction. These adjustments to model outputs are done because it is recognized that the numerical models can never be a perfect representation of real world hydraulic phenomena.

For the present study, the regulatory flood levels were computed this way and are tabulated in Table 5, along with the computed water surface elevations and energy grades.

Flood Line Delineation

Once the RFLs are established, the plotting of 1:100 year flood lines or flood risk limits is a relatively straightforward matter. Given the topographical information in the form of contour lines at 0.5 m interval, the inundated area below the RFLs can be easily delineated manually or by using automated computer programs. In the present case, it was done manually because of the complexities of the topography and flow paths. However, this was cross-checked with the flood lines generated using the HEC-GeoRAS program version 4.0 (USACE, 2005), which has the ability to plot flood lines on topographical maps. This gave us an additional degree of quality control.

At the end, the flood lines were plotted on 1:5000 scale drawings for the entire study area. Since there was no dense urban area within the study reach, 1:2000 scale maps were not needed.

Flood Risk Maps

A set of flood map sheets is attached herewith, consisting of an index map and six 1:5000 scale map sheets.

The index map shows the overall study area, the river network, major settlements, road network, and other land marks. It also shows all the map sheets in outline and the overall flood risk limits, although at a much smaller scale.

In each of the map sheets, rivers and streams with flow directions, contour lines, spot elevations, building outlines, and other land marks are shown. Cross-sections with

chainage and regulatory flood levels are also shown. The floodway, which is basically the entire floodplain for the one-zone areas like the present case, has been shaded for easy identification.

Public Consultation

An open house was held on October 6, 2009 at the Royal Canadian Legion in Perth. The draft flood maps were shown to the public. The technical steps involved in the mapping process were explained. How the flood maps are used by the RVCA and the municipalities was also discussed. The open house was attended by 37 members of the public as well as three RVCA Board Members and a municipal staff. The open house was well received and appreciated by the public. No major issue was identified in the open house. A few helpful suggestions were received and were taken care of afterwards. Several anecdotal observations on high water situations by local residents corroborated the validity of our modeling results. The public was happy with the mapping and there was no outstanding issue.

Project Deliverables

The end products of this project are:

- 1. The Flood Mapping Report (the current memo)
- 2. The flood risk map sheets
- 3. The HEC-RAS model files
- 4. The "documentation folder"

Closure

The design flows derived form the Mike11 model, as listed in Table 1, are our best estimate at the present time. We recommend that these flows be used for flood risk limit delineation by RVCA throughout the Tay Watershed.

The hydrotechnical and cartographic procedures used in this study conform to present day standards of flood hazard delineation, as per the MNR's Natural Hazards Technical Guide (MNR, 2002). The resulting 1:100 year flood lines are suitable for use in the RVCA's regulation limits mapping (referred to in Section 12 of Ontario regulation 174/06) and in municipal land use planning and development approval processes under the Planning Act. The water surface profiles will also be of valuable use in the flood forecasting and warning services of the RVCA.

Ferdous Ahmed, Ph.D., P.Eng. Senior Water Resources Engineer

References:

- 1. Boughton, W. and Droop, O. (2003). Continuous simulation for design flood estimation a review. Environmental Modelling and Software 18:309-318.
- 2. Chow, V. T. (1959). Open-Channel Hydraulics. McGraw-Hill, New York, NY.
- 3. Conservation Ontario (2005). Guidelines for Developing Schedules of Regulated Areas. October 2005.
- 4. DEFRA (2005). National river catchment flood frequency method using continuous simulation. R&D Technical Report FD2106/TR, UK Department for Environment, Food and Rural Affairs, September 2005.
- 5. FENCO (1981). Tay River Flood Plain Mapping. Report prepared for Rideau Valley Conservation Authority by FENCO Consultants Limited, Toronto, May 1981.
- 6. GENIVAR (2008). Hydrotechnical Study of the Rideau River Watershed. Report prepared for Parks Canada by GENIVAR, Ottawa, August 2008.
- 7. Pilon, P. J., and Harvey, D. (1993). CFA Consolidated Frequency Analysis version 3.1. Environment Canada, Surveys and Information Systems Branch, Ottawa, March 1993.
- 8. McCormick Rankin & Associates (1971). Flood plain Limits for the Tay River at Perth. Report prepared for Rideau Valley Conservation Authority by McCormick Rankin & Associates, Ottawa, Canada, November 1971.
- 9. MMAH (2005). 2005 Provincial Policy Statement. Ontario Ministry of Municipal Affairs and Housing, Queen's Printer, Toronto, Ontario, 2005.
- 10. MNR (1986). Flood Plain Management in Ontario Technical Guidelines. Ontario Ministry of Natural Resources, Conservation Authorities and Water Management Branch, Toronto.
- 11. MNR (2002). Technical Guide River & Stream systems: Flooding Hazard Limit. Ontario Ministry of Natural Resources, Water Resources Section, Peterborough, Ontario, 2002.

- 12. RVCA (2007). Rideau River Watershed Modeling Using Mike11, Draft Report, Rideau Valley Conservation Authority, Manotick, Ontario, March 2007.
- RVCA (2010a). Hydraulic Analysis of Haggart Island Dams. Technical Memo,
 Rideau Valley Conservation Authority, Manotick, Ontario, July 2010.
- 14. RVCA (2010b). Estimation of Design Flows for RVCA Lakes. Technical Memo, Rideau Valley Conservation Authority, Manotick, Ontario, November 2010.
- 15. Seabrook (2000). Tay River Watershed Plan: State of the Watershed Hydrology and Hydraulics. Report prepared for Rideau Valley Conservation Authority by Seabrook Hydrotech & Associates, June 2000.
- 16. USACE (1990). HEC-2 Water Surface Profiles User's Manual. US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, September 1990.
- 17. USACE (2002). HEC-RAS River Analysis System Hydraulic Reference Manual version 3.1, US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, November 2002.
- 18. USACE (2005). HEC-GeoRAS GIS Tools for Support of HEC-RAS Using ArcGIS – User's Manual version 4.0, US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, May 2005.

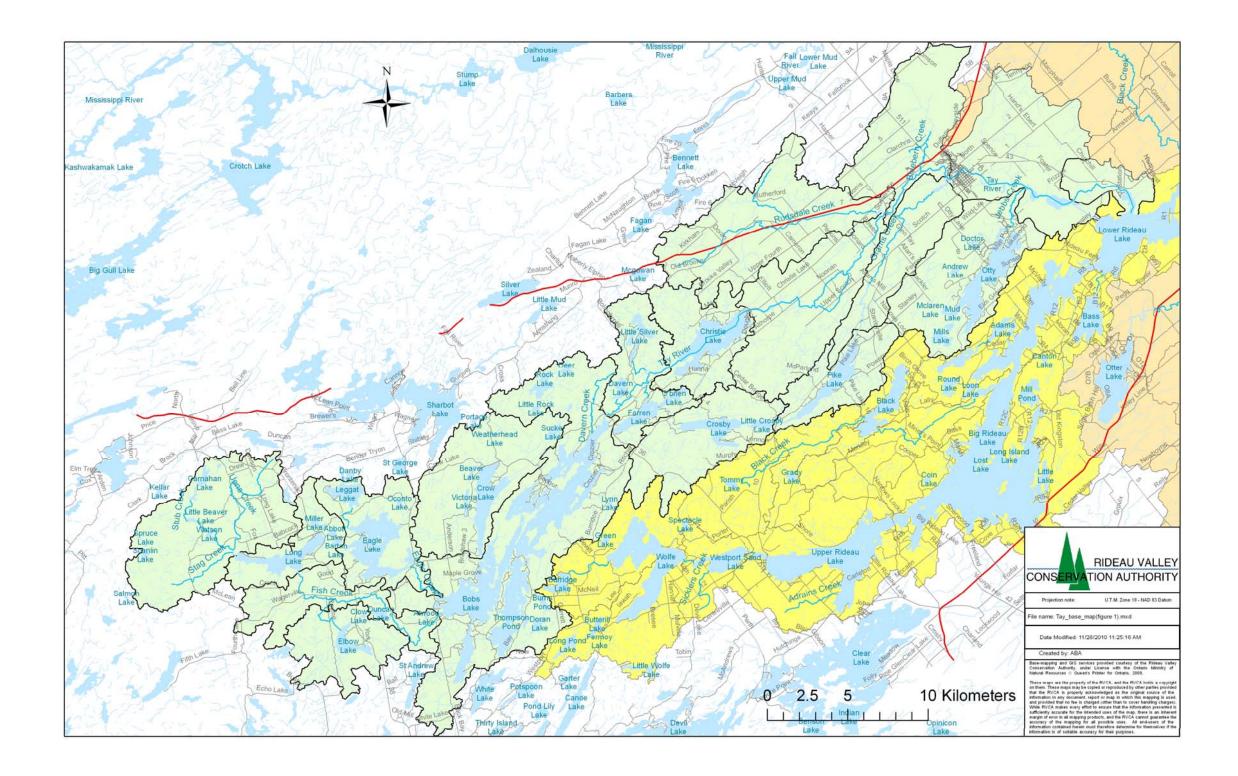


Figure 1 Tay River Basin

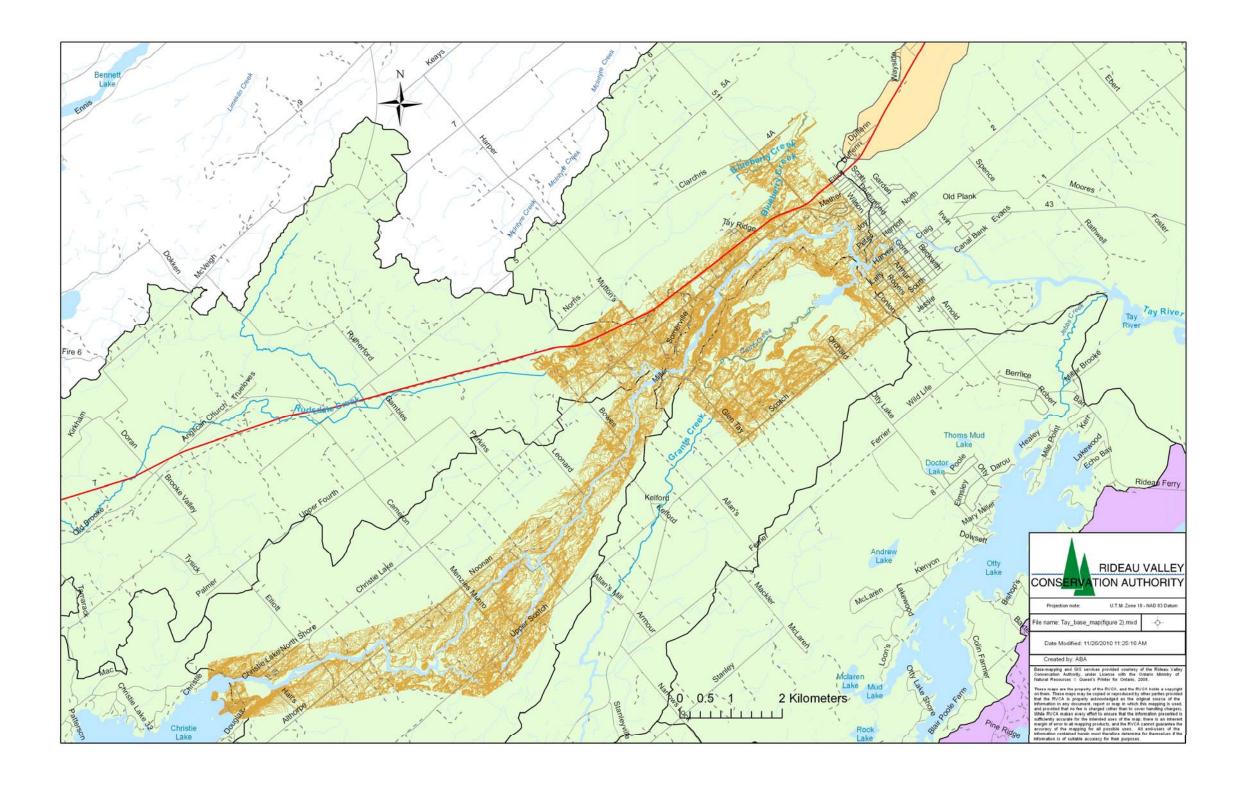


Figure 2 Extent of Aerial Photo

 Tay Mapping.doc
 12/6/2010 4:31:54 PM
 Page 17 of 37

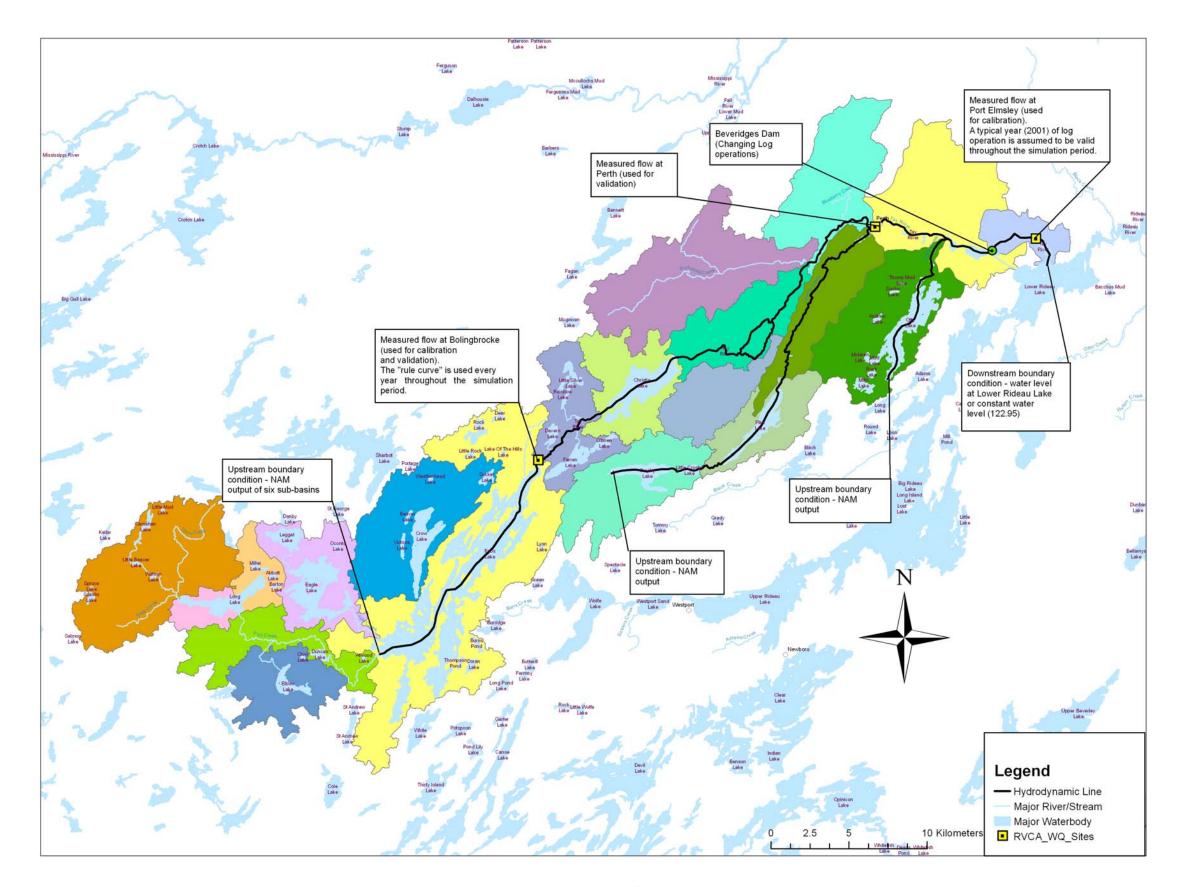
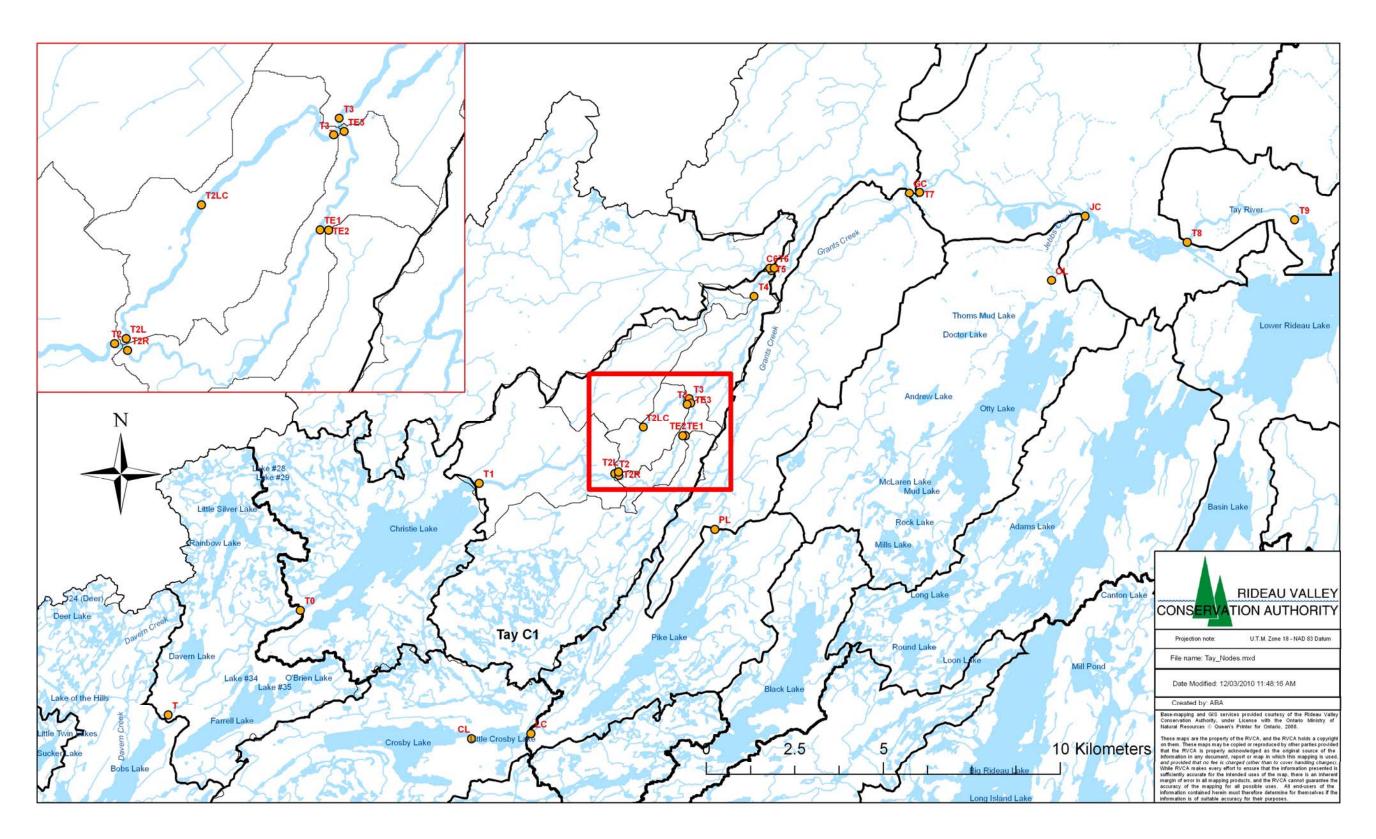



Figure 3 Mike11 Model Schematic

Figure 4 Data Extraction Points

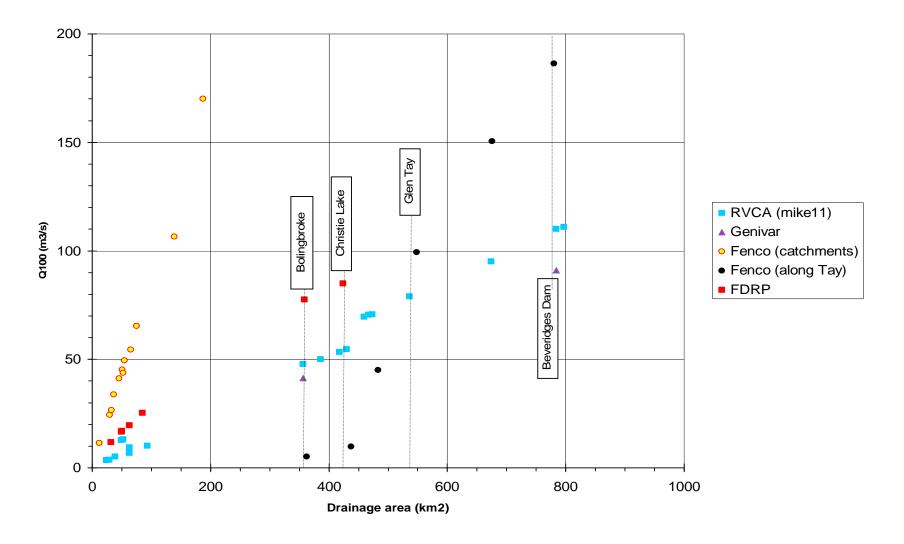
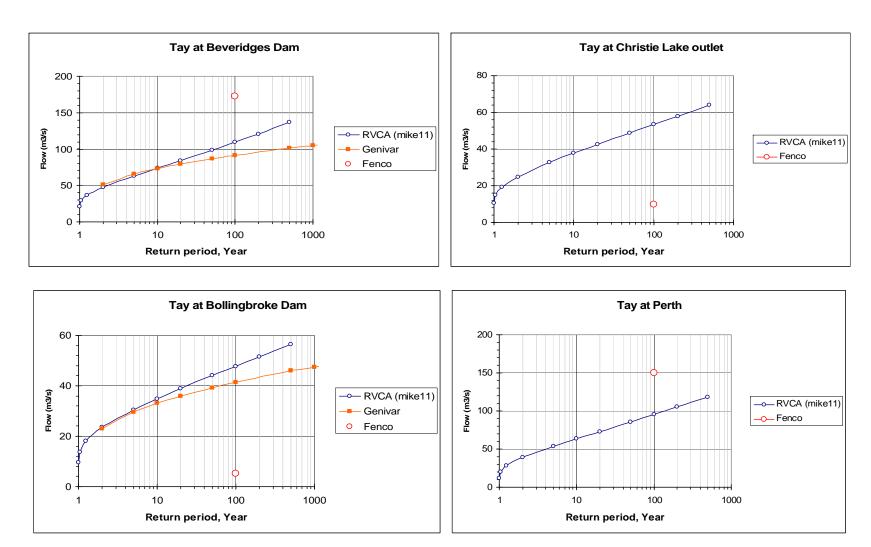



Figure 5 Comparison of 1:100 Year Flow Estimates

Figure 6 Comparison of Flows

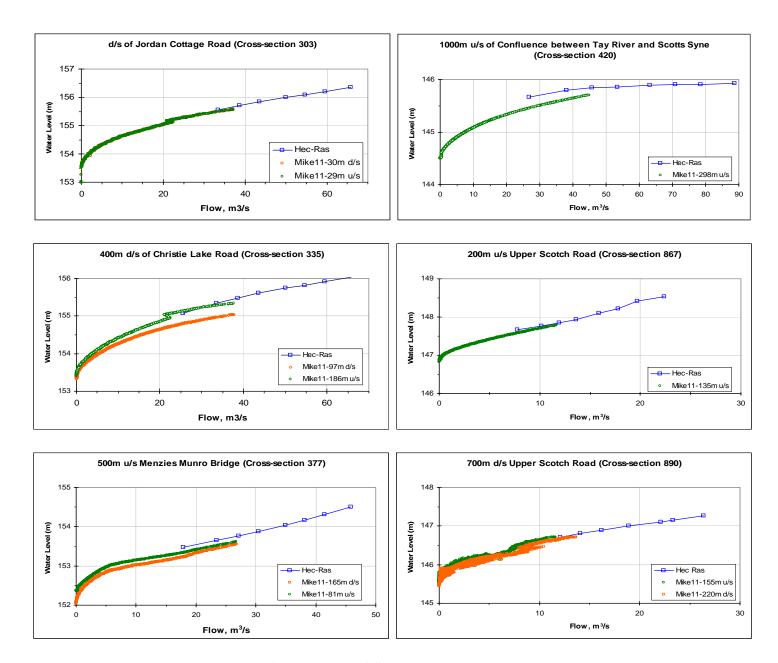


Figure 7 Comparison of Stage-Discharge Relationships

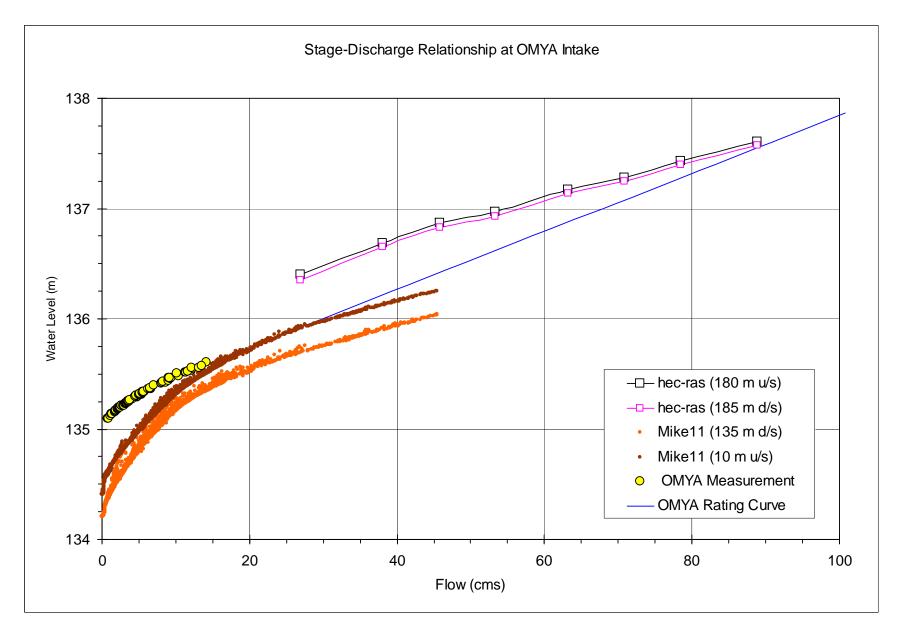
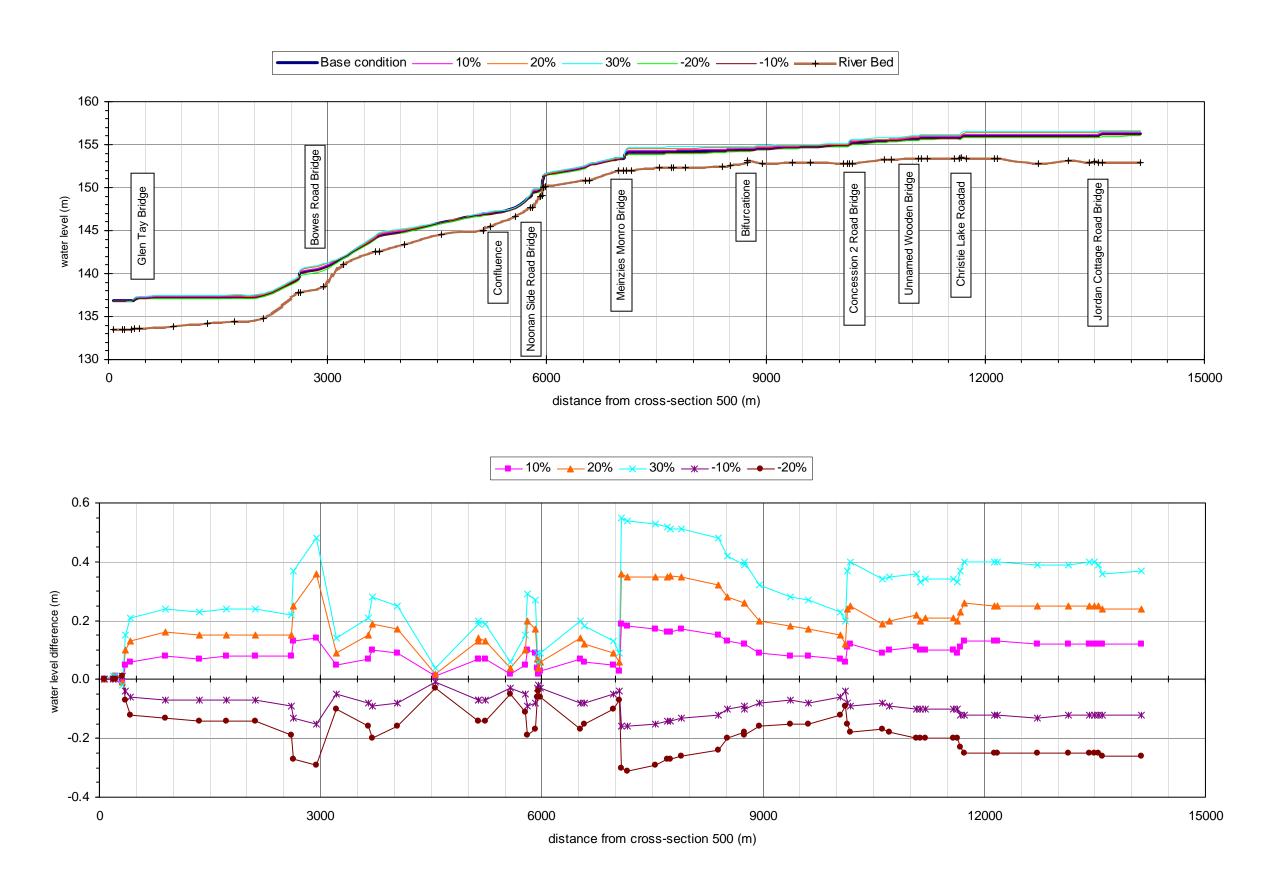



Figure 8 Stage-discharge Relationship at OMYA Intake

Figure 9 Sensitivity Analysis of Computed Water Level

Table 1 Flood Flows at Various Locations

	Bollingbroke Dam (d/s)	Christie Inlet	Christie Outlet	At bifurcation	Left at start - bifurcated	Right at start - bifurcated	LeftCentre - bifurcated	Tay2East before source point	Tav C1 outlet	Left bifurcated flow near confluence	Right bifurcated flow near confluence	At confluence	OMYA Water Intake	Prior to Rudsdale creek	Rudsdale creek outlet	Glen Tay Rd bridge (d/s)	Tay at Perth	Beveridges Dam (d/s)	Tav at Port Elmslev	Crosby Lake outlet	Little Crosby Lake outlet	Pike Lake outlet	Grants Creek outfall	Otty Lake outlet at Rideau Ferry Rd	Jebbs Creek outfall
Return Period	Т	ТО	T1	T2	T2L	T2R	T2LC	TE1	TE2	T3_	TE3	Т3	T4	T5	C6	Т6	T7	Т8	Т9	CL	LC	PL	GC	OL	JC
(year)												Flow, r	n³/s												
1.003	9.5	11.8	10.7	11.0	7.5	3.5	7.6	4.4	0.7	7.5	4.8	6.2	6.5	6.5	1.8	8.5	11.9	21.3	21.0	0.9	1.2		2.1	2.6	2.6
1.05	13.7	16.1	14.8	15.2	10.4	4.8	10.5	5.3	1.0	8.2	5.9	12.2	12.5	12.6	2.7	15.0	19.9	29.1	28.9	1.1	1.5	2.1	3.1	3.3	3.3
1.25	18.0	20.3	19.1	19.5	13.5	6.1	13.6	6.3	1.3	10.9	7.2	18.3	18.6	18.7	3.5	21.6	27.9	36.9	36.9	1.4	1.9	2.7	4.1	4.2	4.2
2	23.5	25.9	24.9	25.5	17.7	7.9	17.9	7.8	1.7	17.4	9.2	26.4	26.8	26.9	4.6	30.5	38.7	47.8	47.9	1.7	2.5	3.5	5.3	5.4	5.4
5	30.5	32.9	32.7	33.5	23.2	10.3	23.5	10.2	2.2	27.3	12.1	37.5	38.0	38.1	5.9	42.8	53.4	63.1	63.4	2.3	3.2	4.5	6.8	7.3	7.3
10	34.9	37.2	37.7	38.7	26.8	11.9	27.1	11.9	2.6	32.9	14.1	45.1	45.7	45.8	6.8	51.3	63.3	73.7	74.2	2.6	3.7	5.1	7.7	8.5	8.6
20	38.9	41.3	42.5	43.6	30.2	13.5	30.5	13.6	2.9	37.3	16.2	52.5	53.2	53.3	7.6	59.5	72.9	84.2	85.0	2.9	4.1	5.6	8.5	9.7	9.9
50	44.1	46.4	48.7	50.0	34.6	15.4	34.9	15.9	3.2	41.6	18.9	62.2	63.0	63.2	8.7	70.6	85.5	98.5	99.4	3.3	4.7	6.3	9.5	11.4	11.7
100	47.8	50.1	53.3	54.7	37.8	16.9	38.2	17.8	3.5	44.1	21.1	69.6	70.6	70.8	9.4	79.0	95.1	110.0	111.0	3.6	5.2	6.8	10.2	12.7	13.1
200	51.5	53.7	58.0	59.5	41.1	18.4	41.5	19.7	3.8	46.0	23.3	77.1	78.2	78.5	10.1	87.7	105.0	121.0	122.0	4.0	5.6	7.3	10.9	14.0	14.5
500	56.4	58.5	64.1	65.8	45.4	20.4	45.9	22.4	4.2	47.9	26.4	87.2	88.6	88.8	11.1	99.4	118.0	137.0	138.0	4.4	6.2	8.0	11.7	15.7	16.5
Flood frequency distribution	3LN	3LN	3LN	3LN	3LN	3LN	3LN	3LN	3LN	WBY	3LN	GEV	GEV	GEV	GEV	GEV	GEV	GEV	GEV	3LN	3LN	3LN	3LN	3LN	3LN

Note:

Flood frequency distributions used: GEV (Gumbel Extreme Value), 3LN (Three Log Normal), LP III (Log Pearsen III), and Wakeby (WBY)

Table 2 Bridges and Culverts

Reach	Name	Bridges/ Culvert	Chainage	Bounding xsecs	Deck Top	Low chord	Deck width (m)	Source
Tay2A	Glen Tay Bridge	В	577.50	480 & 485	138.09	136.59	9.70	FENCO (1981)
Tay2A	Bowes Road Bridge	В	2856.00	429 & 430	141.93	140.93	8.00	RVCA Survey (Aug-Sep 2007)
Tay2A	Wildgoose Private Crossing	В	3920.00	424 & 425	145.45	145.18	3.50	RVCA Survey (Aug-Sep 2007)
Tay2B	Noonan Side Road Bridge	В	671.50	397 & 398	151.06	150.81	8.50	RVCA Survey (Aug-Sep 2007)
Tay2B	Meinzies Monro Bridge	В	1956.70	382 & 383	154.77	154.12	8.50	RVCA Survey (Aug-Sep 2007)
Tay2C	Concession 2 Bridge	В	1545.65	348 & 349	155.94	154.94	8.00	RVCA Survey (Aug-Sep 2007)
Tay2C	Dougal Private Crossing	В	2093.60	338 & 340	156.87	155.87	3.50	RVCA Survey (Aug-Sep 2007)
Tay2C	Unnamed Wooden Bridge	В	2523.00	336 & 337	155.17	154.96	4.00	RVCA Survey (Aug-Sep 2007)
Tay2C	Christie Lake Road	В	3075.24	327 & 328	156.70	156.25	7.90	RVCA Survey (Aug-Sep 2007)
Tay2C	Jordan Cottage Road Bridge	В	4980.00	300 & 303	155.93	155.00	4.00	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Noonan Side Road Bridge	В	65.90	899 & 900	148.21	147.96	9.05	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Brady Private Crossing	В	1734.72	883 & 885	147.38	147.13	4.30	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Upper Scotch Line Culvert	С	2034.00	876 & 877	148.62	148.37	18.00	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Morrison Private Crossing	В	2185.50	867 & 870	148.08	148.00	3.70	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Preston Private Crossing	В	2560.00	863 & 864	148.01	147.80	3.65	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Rathwell Private Crossing	В	2835.05	857 & 860	149.94	149.80	2.00	RVCA Survey (Aug-Sep 2007)
Scotts Snye	Upper Scotch Line Culvert	С	3715.00	820 & 822	155.07	154.82	18.60	RVCA Survey (Aug-Sep 2007)

Table 3 Design Flows in HEC-RAS Model

River/Creek	Reach	River Station	Xsec ID		Estim	ated Desigr	n Flow in m ³	s for Differ	rent Flood E	Events	
		#		500 yr	200 yr	100 yr	50 yr	20 yr	10 yr	5 yr	2 yr
TAY	Tay2A	244.371	500	99.80	88.10	79.40	70.90	59.80	51.50	43.00	30.60
TAY	Tay2A	560.125	485	99.80	88.10	79.40	70.90	59.80	51.50	43.00	30.60
TAY	Tay2A	593.502	480	99.40	87.70	79.00	70.60	59.50	51.30	42.80	30.50
TAY	Tay2A	664.187	470	99.40	87.70	79.00	70.60	59.50	51.30	42.80	30.50
TAY	Tay2A	1137.32	460	88.80	78.50	70.80	63.20	53.30	45.80	38.10	26.90
TAY	Tay2A	5380.33	410	88.80	78.50	70.80	63.20	53.30	45.80	38.10	26.90
TAY	Tay2B	23.7604	403	47.90	46.00	44.10	41.60	37.30	32.90	27.30	17.40
TAY	Tay2B	1940.74	383	47.90	46.00	44.10	41.60	37.30	32.90	27.30	17.40
TAY	Tay2B	3629.13	363	45.90	41.50	38.20	34.90	30.50	27.10	23.50	17.90
TAY	Tay2C	152.679	360	65.80	59.50	54.70	50.00	43.60	38.70	33.50	25.50
TAY	Tay2C	5537.99	250	65.80	59.50	54.70	50.00	43.60	38.70	33.50	25.50
Scotts Snye	Scotts Snye	54.9379	900	26.40	23.30	22.10	18.90	16.20	14.10	12.10	9.20
Scotts Snye	Scotts Snye	1718.77	885	26.40	23.30	22.10	18.90	16.20	14.10	12.10	9.20
Scotts Snye	Scotts Snye	4714.17	810	22.40	19.70	17.80	15.90	13.60	11.90	10.20	7.80

Table 4 Downstream Boundary Condition

Return Period	Flow of Water	Water Surface Elev
Years	m³/s	m
500	99.80	136.99
200	88.10	136.93
100	79.40	136.85
50	70.90	136.81
20	59.80	136.68
10	51.50	136.60
5	43.00	136.52
2	30.60	136.24

Table 5 Regulatory Flood Levels for 1:100 Year Flood Event

River/Creek	Reach	River Station	Xsec ID	Q (total)	Computed WSEL	EGL	RFL
			#	m³/s	m	m	m
	Tay2A	244.371	500	79.40	136.85	136.85	Outside
	Tay2A	309.746	498	79.40	136.85	136.85	Study
	Tay2A	430.130	495	79.40	136.85	136.86	Limit
	Tay2A	459.997	490	79.40	136.85	136.86	
	Tay2A	560.126	485	79.40	136.82	136.90	
	Tay2A	577.500		Glen Tay	Road Bridge		
	Tay2A	593.502	480	79.00	137.03	137.16	137.16
	Tay2A	664.188	470	79.00	137.17	137.23	137.23
	Tay2A	1137.321	460	70.80	137.24	137.24	137.24
	Tay2A	1601.435	450	70.80	137.25	137.25	137.25
	Tay2A	1963.644	445	70.80	137.28	137.29	137.28
	Tay2A	2364.532	440	70.80	137.46	137.48	137.46
	Tay2A	2841.859	430	70.80	139.41	139.95	139.95
-	Tay2A	2856.000		Bowes Ro	oad Bridge		•
	Tay2A	2871.233	429	70.80	140.08	140.33	140.33
	Tay2A	3183.436	428	70.80	140.68	140.72	140.68
-	Tay2A	3461.330	427	70.80	141.86	142.19	142.19
	Tay2A	3892.428	425	70.80	144.17	144.33	144.33
	Tay2A	3920.000			e Private Crossing		
∝	Tay2A	3951.251	424	70.80	144.45	144.56	144.56
TAY RIVER	Tay2A	4292.497	423	70.80	144.93	144.96	144.93
≿ -	Tay2A	4804.420	420	70.80	145.90	146.12	146.12
ΔT	Tay2A	5380.333	410	70.80	146.93	146.95	146.93
	Tay2B	23.760	403	44.10	146.94	146.95	146.94
	Tay2B	122.438	400	44.10	146.98	146.99	146.98
-	Tay2B	460.000	399	44.10	147.64	147.79	147.79
-	Tay2B	659.126	398	44.10	149.01	149.19	149.19
	Tay2B	671.500		Noonan S	Side Road Bridge	•	
-	Tay2B	690.395	397	44.10	149.44	149.56	149.56
-	Tay2B	803.688	395	44.10	149.76	149.85	149.85
	Tay2B	828.899	394wier	44.10	150.40	150.61	150.61
	Tay2B	841.118	393(fixed weir)	44.10	151.27	151.41	151.41
-	Tay2B	875.467	392	44.10	151.48	151.51	151.48
	Tay2B	1411.781	390	44.10	152.40	152.55	152.55
	Tay2B	1467.367	387	44.10	152.66	152.74	152.74
	Tay2B	1863.693	385	44.10	153.33	153.35	153.33
	Tay2B	1940.746	383	44.10	153.39	153.57	153.57
	Tay2B	1956.700			Monro Bridge		
-	Tay2B	1973.999	382	38.20	154.03	154.11	154.11
	Tay2B	2044.126	380	38.20	154.13	154.13	154.13
	Tay2B	2423.260	377	38.20	154.16	154.16	154.16
	Tay2B	2597.757	376	38.20	154.19	154.20	154.19

Table 5 Cont'd

	Tay2B	2625.561	375	38.20	154.20	154.20	154.20
	Tay2B	2786.586	374	38.20	154.21	154.22	154.21
	Tay2B	3285.718	370	38.20	154.28	154.31	154.28
	Tay2B	3407.402	365	38.20	154.36	154.37	154.36
	Tay2B	3629.139	363	38.20	154.40	154.40	154.40
	Tay2C	152.680	360	54.70	154.38	154.42	154.38
	Tay2C	368.359	357	54.70	154.55	154.56	154.55
	Tay2C	776.829	355	54.70	154.68	154.69	154.68
	Tay2C	1023.538	353	54.70	154.75	154.76	154.75
	Tay2C	1465.962	350	54.70	154.89	154.90	154.89
	Tay2C	1526.047	349	54.70	154.87	155.00	155.00
	Tay2C	1545.650		Concession	on 2 Bridge		
	Tay2C	1558.590	348	54.70	155.06	155.16	155.16
	Tay2C	1600.361	345	54.70	155.19	155.21	155.19
	Tay2C	2026.387	340	54.70	155.44	155.49	155.49
	Tay2C	2093.600		Dougal Pr	ivate Crossing		
	Tay2C	2120.912	338	54.70	155.52	155.57	155.52
	Tay2C	2496.332	337	54.70	155.68	155.74	155.74
	Tay2C	2523.000		Unnamed	Wooden Bridge		
	Tay2C	2540.370	336	54.70	155.79	155.82	155.79
	Tay2C	2615.674	335	54.70	155.82	155.82	155.82
	Tay2C	2987.563	330	54.70	155.84	155.85	155.84
	Tay2C	3054.625	328	54.70	155.81	155.92	155.92
	Tay2C	3075.235		Christie La	ake Road		
	Tay2C	3090.636	327	54.70	155.98	156.07	156.07
	Tay2C	3147.530	325	54.70	156.08	156.09	156.08
	Tay2C	3543.548	322	54.70	156.09	156.09	156.09
	Tay2C	3585.045	321	54.70	156.09	156.09	156.09
	Tay2C	4137.738	320	54.70	156.10	156.10	156.10
	Tay2C	4551.223	315	54.70	156.10	156.10	156.10
	Tay2C	4833.916	310	54.70	156.10	156.10	156.10
	Tay2C	4906.529	305	54.70	156.10	156.11	156.10
	Tay2C	4965.206	303	54.70	156.10	156.12	156.10
	Tay2C	4980.000		Jordan Co	ottage Road Bridge		
	Tay2C	5012.969	300	54.70	156.24	156.26	156.24
	Tay2C	5537.999	250	54.70	156.26	156.26	156.26
	Scotts Snye	54.938	900	22.10	146.93	146.95	146.93
	Scotts Snye	65.900			ide Road Bridge		
	Scotts Snye	85.936	899	22.10	146.96	147.05	147.05
d)	Scotts Snye	492.922	897	22.10	147.08	147.08	147.08
Snye	Scotts Snye	991.151	895	22.10	147.09	147.09	147.09
Scotts Snye	Scotts Snye	1432.316	890	22.10	147.10	147.10	147.10
Sco	Scotts Snye	1718.774	885	22.10	147.10	147.17	147.17
	Scotts Snye	1734.720		Brady Priv	ate Crossing	1	1
	Scotts Snye	1742.916	883	17.80	147.76	147.82	147.82
	Scotts Snye	1852.837	880	17.80	147.83	147.83	147.83
	Scotts Snye	2019.013	877	17.80	147.83	147.85	147.83

 Tay Mapping.doc
 12/6/2010 4:31:54 PM
 Page 29 of 37

Table 5 Cont'd

Scotts Snye	2034.000		Upper Sco	otch Line Culvert		
Scotts Snye	2042.292	876	17.80	147.99	148.01	147.99
Scotts Snye	2074.882	875	17.80	148.01	148.01	148.01
Scotts Snye	2171.385	870	17.80	147.98	148.05	148.05
Scotts Snye	2185.500		Morrison I	Private Crossing	•	
Scotts Snye	2202.864	867	17.80	148.21	148.29	148.29
Scotts Snye	2503.605	865	17.80	148.43	148.44	148.43
Scotts Snye	2547.598	864	17.80	148.42	148.47	148.47
Scotts Snye	2560.000		Preston P	rivate Crossing	•	
Scotts Snye	2571.380	863	17.80	148.54	148.59	148.59
Scotts Snye	2809.062	860	17.80	148.73	148.91	148.91
Scotts Snye	2835.050		Rathwell I	Private Crossing		
Scotts Snye	2851.744	857	17.80	150.32	150.36	150.32
Scotts Snye	2950.574	855	17.80	150.36	150.36	150.36
Scotts Snye	3102.223	850	17.80	150.36	150.36	150.36
Scotts Snye	3199.053	840	17.80	150.36	150.37	150.36
Scotts Snye	3243.152	830	17.80	150.80	151.04	151.04
Scotts Snye	3507.560	825	17.80	152.82	152.95	152.95
Scotts Snye	3697.935	822	17.80	153.41	153.53	153.53
Scotts Snye	3715.000		Upper Sco	otch Line Culvert		
Scotts Snye	3726.498	820	17.80	153.88	153.92	153.88
Scotts Snye	4121.302	815	17.80	154.09	154.09	154.09
Scotts Snye	4621.113	813	17.80	154.29	154.29	154.29
Scotts Snye	4714.170	810	17.80	154.34	154.34	154.34

Note:

RFL - Regulatory Flood Levels

EGL - Energy Grade Elevation

WSEL - Water Surface Elevation

Table 6a Computed Water Surface Elevations for Different Flood Events

River/	Reach	River Station	Xsec ID	Flo	w (m³/s) aı	nd Comp	uted WSEL	(m) for l	Different F	lood Eve	nts
Creek			#	Q500	WL500	Q200	WL200	Q100	WL100	Q50	WL50
	Tay2A	244.371	500	99.80	136.99	88.10	136.93	79.40	136.85	70.90	136.81
	Tay2A	309.746	498	99.80	136.99	88.10	136.93	79.40	136.85	70.90	136.81
	Tay2A	430.130	495	99.80	137.00	88.10	136.93	79.40	136.85	70.90	136.81
	Tay2A	459.997	490	99.80	137.00	88.10	136.94	79.40	136.85	70.90	136.81
	Tay2A	560.126	485	99.80	136.95	88.10	136.89	79.40	136.82	70.90	136.79
	Tay2A	577.500		1	Glen Tay	Road B	ridge		1	1	
	Tay2A	593.502	480	99.40	137.32	87.70	137.17	79.00	137.03	70.60	136.95
	Tay2A	664.188	470	99.40	137.49	87.70	137.32	79.00	137.17	70.60	137.06
	Tay2A	1137.321	460	88.80	137.57	78.50	137.40	70.80	137.24	63.20	137.13
	Tay2A	1601.435	450	88.80	137.57	78.50	137.40	70.80	137.25	63.20	137.14
	Tay2A	1963.644	445	88.80	137.61	78.50	137.43	70.80	137.28	63.20	137.17
	Tay2A	2364.532	440	88.80	137.74	78.50	137.58	70.80	137.46	63.20	137.37
	Tay2A	2841.859	430	88.80	139.59	78.50	139.50	70.80	139.41	63.20	139.31
	Tay2A	2856.000		ı	Bowes F	Road Bri	dge		ı	1	
	Tay2A	2871.233	429	88.80	140.40	78.50	140.22	70.80	140.08	63.20	139.94
	Tay2A	3183.436	428	88.80	141.11	78.50	140.83	70.80	140.68	63.20	140.52
	Tay2A	3461.330	427	88.80	141.98	78.50	141.91	70.80	141.86	63.20	141.80
	Tay2A	3892.428	425	88.80	144.35	78.50	144.25	70.80	144.17	63.20	144.09
	Tay2A	3920.000		W	ildgoose F	Private C	rossing		ı	1	
~	Tay2A	3951.251	424	88.80	144.69	78.50	144.56	70.80	144.45	63.20	144.35
TAY RIVER	Tay2A	4292.497	423	88.80	145.14	78.50	145.02	70.80	144.93	63.20	144.84
AY F	Tay2A	4804.420	420	88.80	145.93	78.50	145.91	70.80	145.90	63.20	145.89
 	Tay2A	5380.333	410	88.80	147.09	78.50	147.00	70.80	146.93	63.20	146.86
	Tay2B	23.760	403	47.90	147.11	46.00	147.02	44.10	146.94	41.60	146.87
	Tay2B	122.438	400	47.90	147.14	46.00	147.05	44.10	146.98	41.60	146.91
	Tay2B	460.000	399	47.90	147.66	46.00	147.65	44.10	147.64	41.60	147.62
	Tay2B	659.126	398	47.90	149.05	46.00	149.03	44.10	149.01	41.60	148.98
	Tay2B	671.500		N	oonan Sid	de Road	Bridge		1	1	
	Tay2B	690.395	397	47.90	149.53	46.00	149.49	44.10	149.44	41.60	149.39
	Tay2B	803.688	395	47.90	149.84	46.00	149.80	44.10	149.76	41.60	149.71
	Tay2B	828.899	394wier	47.90	150.43	46.00	150.42	44.10	150.40	41.60	150.38
	Tay2B	841.118	393(fixed weir)	47.90	151.29	46.00	151.29	44.10	151.27	41.60	151.26
	Tay2B	875.467	392	47.90	151.51	46.00	151.49	44.10	151.48	41.60	151.46
	Tay2B	1411.781	390	47.90	152.46	46.00	152.43	44.10	152.40	41.60	152.35
	Tay2B	1467.367	387	47.90	152.71	46.00	152.68	44.10	152.66	41.60	152.61
	Tay2B	1863.693	385	47.90	153.37	46.00	153.35	44.10	153.33	41.60	153.30
	Tay2B	1940.746	383	47.90	153.41	46.00	153.40	44.10	153.39	41.60	153.37
	Tay2B	1956.700			Meinzies	Monro B	ridge				
	Tay2B	1973.999	382	45.90	154.40	41.50	154.19	38.20	154.03	34.90	153.90
	Tay2B	2044.126	380	45.90	154.49	41.50	154.28	38.20	154.13	34.90	153.99
	Tay2B	2423.260	377	45.90	154.51	41.50	154.31	38.20	154.16	34.90	154.03
	Tay2B	2597.757	376	45.90	154.54	41.50	154.33	38.20	154.19	34.90	154.06

Table 6a Cont'd

	Tay2B	2625.561	375	45.90	154.55	41.50	154.34	38.20	154.20	34.90	154.07
	Tay2B	2786.586	374	45.90	154.56	41.50	154.35	38.20	154.21	34.90	154.09
	Tay2B	3285.718	370	45.90	154.61	41.50	154.41	38.20	154.28	34.90	154.18
	Tay2B	3407.402	365	45.90	154.64	41.50	154.47	38.20	154.36	34.90	154.27
	Tay2B	3629.139	363	45.90	154.66	41.50	154.50	38.20	154.40	34.90	154.32
	Tay2C	152.680	360	65.80	154.64	59.50	154.48	54.70	154.38	50.00	154.29
	Tay2C	368.359	357	65.80	154.76	59.50	154.63	54.70	154.55	50.00	154.48
	Tay2C	776.829	355	65.80	154.86	59.50	154.75	54.70	154.68	50.00	154.62
	Tay2C	1023.538	353	65.80	154.93	59.50	154.82	54.70	154.75	50.00	154.69
	Tay2C	1465.962	350	65.80	155.04	59.50	154.95	54.70	154.89	50.00	154.84
	Tay2C	1526.047	349	65.80	155.00	59.50	154.93	54.70	154.87	50.00	154.83
	Tay2C	1545.650			Concess	sion 2 Br	idge				
	Tay2C	1558.590	348	65.80	155.31	59.50	155.14	54.70	155.06	50.00	154.99
	Tay2C	1600.361	345	65.80	155.45	59.50	155.28	54.70	155.19	50.00	155.11
	Tay2C	2026.387	340	65.80	155.63	59.50	155.51	54.70	155.44	50.00	155.37
	Tay2C	2093.600			Dougal Pr	ivate Cro	ossing				
	Tay2C	2120.912	338	65.80	155.73	59.50	155.60	54.70	155.52	50.00	155.44
	Tay2C	2496.332	337	65.80	155.90	59.50	155.77	54.70	155.68	50.00	155.60
	Tay2C	2523.000		L	Innamed \	<u>Woo</u> den	Bridge				
	Tay2C	2540.370	336	65.80	155.99	59.50	155.87	54.70	155.79	50.00	155.71
	Tay2C	2615.674	335	65.80	156.03	59.50	155.91	54.70	155.82	50.00	155.74
	Tay2C	2987.563	330	65.80	156.05	59.50	155.93	54.70	155.84	50.00	155.76
	Tay2C	3054.625	328	65.80	156.01	59.50	155.89	54.70	155.81	50.00	155.73
	Tay2C	3075.235			Christie	Lake Ro	oad		•		•
	Tay2C	3090.636	327	65.80	156.21	59.50	156.07	54.70	155.98	50.00	155.88
	Tay2C	3147.530	325	65.80	156.34	59.50	156.19	54.70	156.08	50.00	155.98
	Tay2C	3543.548	322	65.80	156.35	59.50	156.20	54.70	156.09	50.00	155.99
	Tay2C	3585.045	321	65.80	156.35	59.50	156.20	54.70	156.09	50.00	155.99
	Tay2C	4137.738	320	65.80	156.35	59.50	156.20	54.70	156.10	50.00	155.99
	Tay2C	4551.223	315	65.80	156.36	59.50	156.21	54.70	156.10	50.00	156.00
	Tay2C	4833.916	310	65.80	156.36	59.50	156.21	54.70	156.10	50.00	156.00
	Tay2C	4906.529	305	65.80	156.36	59.50	156.21	54.70	156.10	50.00	156.00
	Tay2C	4965.206	303	65.80	156.35	59.50	156.21	54.70	156.10	50.00	156.00
	Tay2C	4980.000			rdan Cotta						
	Tay2C	5012.969	300	65.80	156.48	59.50	156.34	54.70	156.24	50.00	156.14
	Tay2C	5537.999	250	65.80	156.50	59.50	156.37	54.70	156.26	50.00	156.16
	Scotts Snye	54.938	900	26.40	147.09	23.30	147.00	22.10	146.93	18.90	146.86
	Scotts Snye	65.900			loonan Sid						
	Scotts Snye	85.936	899	26.40	147.12	23.30	147.03	22.10	146.96	18.90	146.88
	Scotts Snye	492.922	897	26.40	147.12	23.30	147.15	22.10	147.08	18.90	146.98
у́е	Scotts Snye	991.151	895	26.40	147.26	23.30	147.15	22.10	147.09	18.90	146.99
ts Sr	Scotts Snye	1432.316	890	26.40	147.27	23.30	147.16	22.10	147.10	18.90	147.00
Scotts Snye	Scotts Snye	1718.774	885	26.40	147.26	23.30	147.17	22.10	147.10	18.90	147.00
	Scotts Snye	1734.720		20.70	Brady Pri				1 111.10	10.00	1 111.01
	Scotts Snye	1742.916	883	22.40	148.04	19.70	147.87	17.80	147.76	15.90	147.61
	Scotts Snye	1852.837	880	22.40	148.14	19.70	147.96	17.80	147.76	15.90	147.61
	Scotts Snye	2019.013	877	22.40	148.13	19.70	147.96	17.80	147.83	15.90	147.68

Table 6a Cont'd

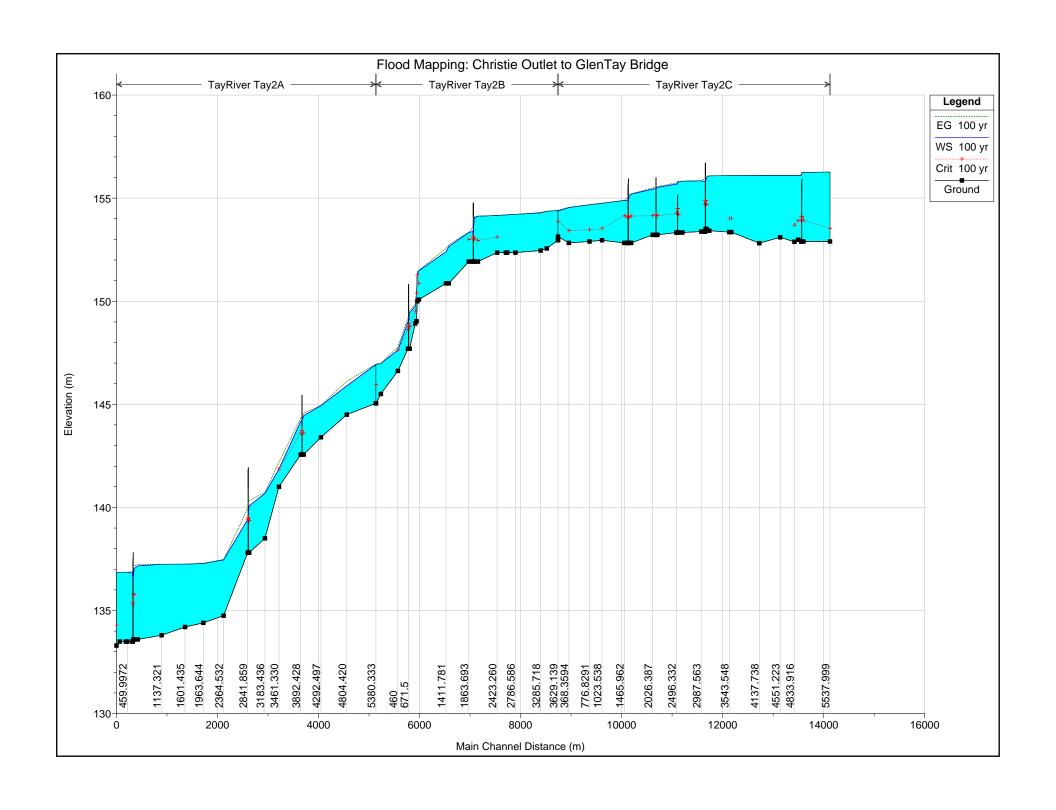
Scotts Snye	2034.000		U	Ipper Scot	ch Line	Culvert				
Scotts Snye	2042.292	876	22.40	148.31	19.70	148.13	17.80	147.99	15.90	147.84
Scotts Snye	2074.882	875	22.40	148.34	19.70	148.15	17.80	148.01	15.90	147.85
Scotts Snye	2171.385	870	22.40	148.31	19.70	148.12	17.80	147.98	15.90	147.82
Scotts Snye	2185.500		N	Norrison P	rivate Cr	ossing				
Scotts Snye	2202.864	867	22.40	148.53	19.70	148.41	17.80	148.21	15.90	148.10
Scotts Snye	2503.605	865	22.40	148.72	19.70	148.59	17.80	148.43	15.90	148.32
Scotts Snye	2547.598	864	22.40	148.71	19.70	148.58	17.80	148.42	15.90	148.32
Scotts Snye	2560.000		F	Preston Pr	ivate Cr	ossing				
Scotts Snye	2571.380	863	22.40	148.80	19.70	148.68	17.80	148.54	15.90	148.45
Scotts Snye	2809.062	860	22.40	148.97	19.70	148.85	17.80	148.73	15.90	148.63
Scotts Snye	2835.050		F	Rathwell P	rivate Cr	ossing				
Scotts Snye	2851.744	857	22.40	150.54	19.70	150.41	17.80	150.32	15.90	150.23
Scotts Snye	2950.574	855	22.40	150.60	19.70	150.46	17.80	150.36	15.90	150.27
Scotts Snye	3102.223	850	22.40	150.60	19.70	150.46	17.80	150.36	15.90	150.27
Scotts Snye	3199.053	840	22.40	150.59	19.70	150.46	17.80	150.36	15.90	150.26
Scotts Snye	3243.152	830	22.40	150.90	19.70	150.85	17.80	150.80	15.90	150.76
Scotts Snye	3507.560	825	22.40	152.96	19.70	152.88	17.80	152.82	15.90	152.75
Scotts Snye	3697.935	822	22.40	153.57	19.70	153.48	17.80	153.41	15.90	153.34
Scotts Snye	3715.000		U	pper Scot	ch Line	Culvert				
Scotts Snye	3726.498	820	22.40	154.11	19.70	153.98	17.80	153.88	15.90	153.78
Scotts Snye	4121.302	815	22.40	154.29	19.70	154.17	17.80	154.09	15.90	154.01
Scotts Snye	4621.113	813	22.40	154.41	19.70	154.34	17.80	154.29	15.90	154.25
Scotts Snye	4714.170	810	22.40	154.44	19.70	154.38	17.80	154.34	15.90	154.31

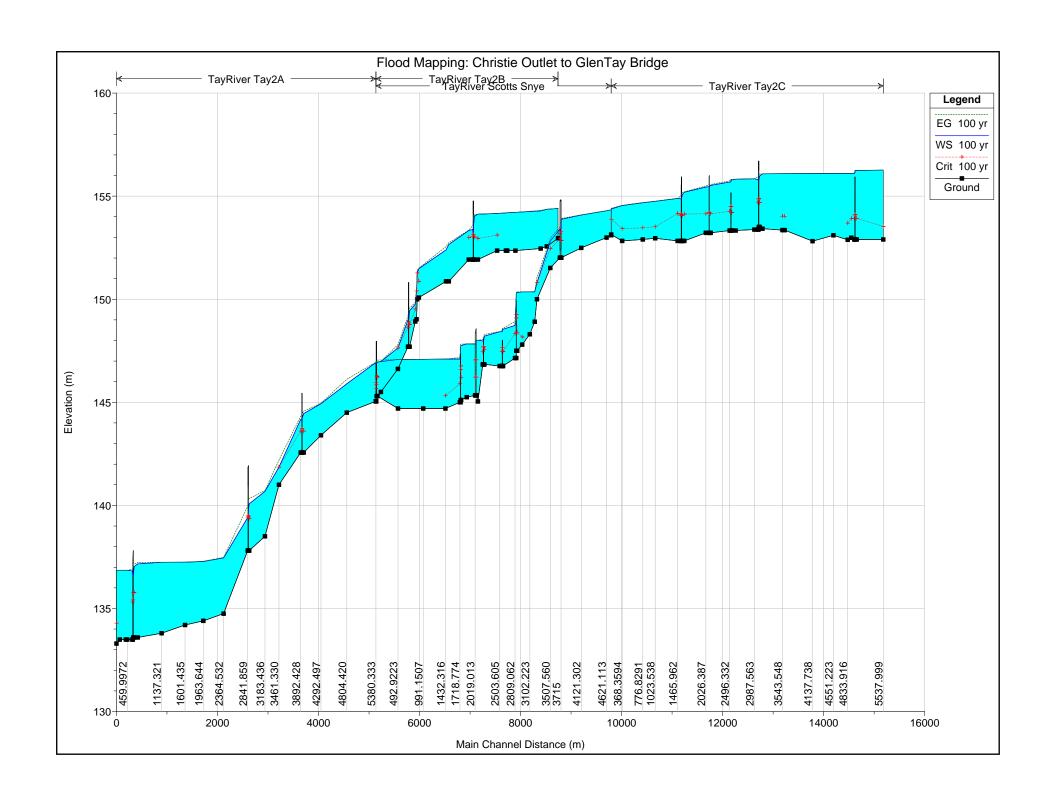
Table 6b Computed Water Surface Elevations for Different Flood Events

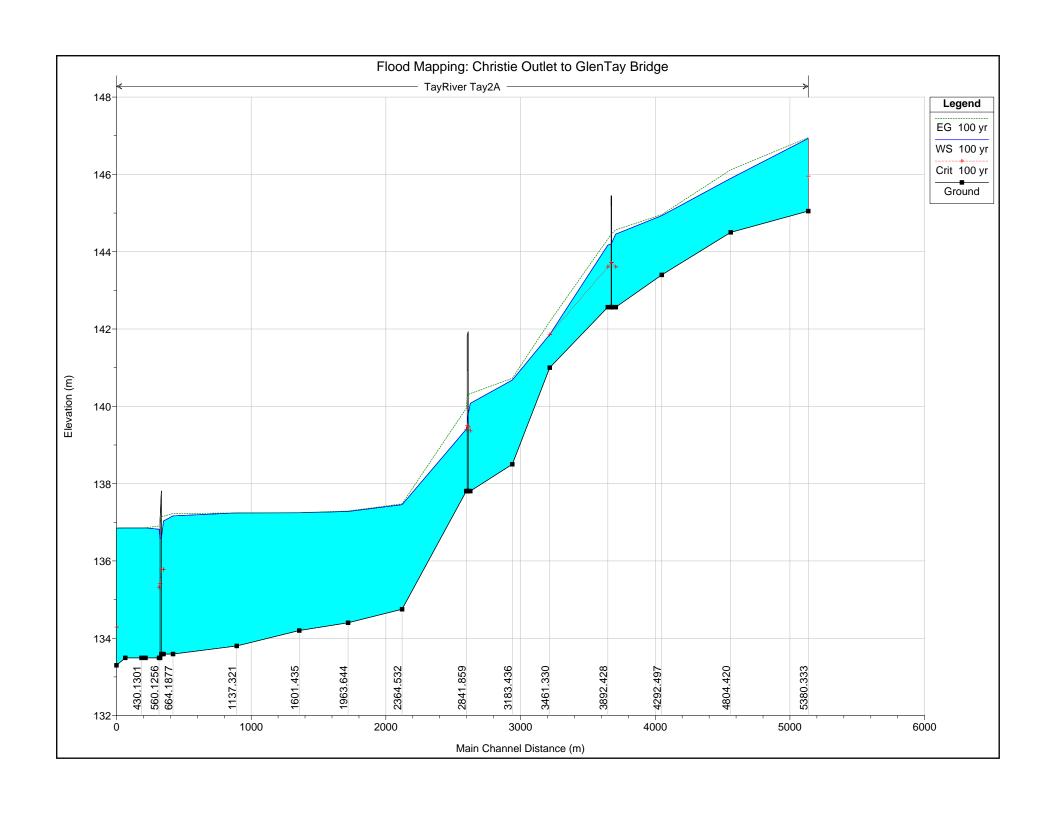
River/	Reach	River Station	Xsec ID	Flo	w (m³/s) a	nd Comp	outed WSE	L (m) for	Different	Flood Ev	ents
Creek			#	Q20	WL20	Q10	WL10	Q5	WL5	Q2	WL2
	Tay2A	244.371	500	59.80	136.68	51.50	136.60	43.00	136.52	30.60	136.24
	Tay2A	309.746	498	59.80	136.68	51.50	136.60	43.00	136.52	30.60	136.24
	Tay2A	430.130	495	59.80	136.68	51.50	136.60	43.00	136.52	30.60	136.24
	Tay2A	459.997	490	59.80	136.68	51.50	136.60	43.00	136.52	30.60	136.24
	Tay2A	560.126	485	59.80	136.66	51.50	136.59	43.00	136.51	30.60	136.24
	Tay2A	577.500		G	len Tay F	Road Bri	dge				ı
	Tay2A	593.502	480	59.50	136.76	51.30	136.69	42.80	136.53	30.50	136.25
	Tay2A	664.188	470	59.50	136.86	51.30	136.77	42.80	136.60	30.50	136.30
	Tay2A	1137.321	460	53.30	136.93	45.80	136.83	38.10	136.65	26.90	136.34
	Tay2A	1601.435	450	53.30	136.93	45.80	136.83	38.10	136.65	26.90	136.35
	Tay2A	1963.644	445	53.30	136.97	45.80	136.87	38.10	136.69	26.90	136.40
	Tay2A	2364.532	440	53.30	137.22	45.80	137.13	38.10	136.85	26.90	136.52
	Tay2A	2841.859	430	53.30	139.17	45.80	139.06	38.10	138.94	26.90	138.75
	Tay2A	2856.000		ı	Bowe	s Road	Bridge				ı
	Tay2A	2871.233	429	53.30	139.74	45.80	139.59	38.10	139.42	26.90	139.15
	Tay2A	3183.436	428	53.30	140.32	45.80	140.16	38.10	139.99	26.90	139.72
	Tay2A	3461.330	427	53.30	141.73	45.80	141.68	38.10	141.62	26.90	141.51
	Tay2A	3892.428	425	53.30	143.97	45.80	143.87	38.10	143.77	26.90	143.59
	Tay2A	3920.000		Wild	lgoose Pr	ivate Cr	ossing		Ī		Г
	Tay2A	3951.251	424	53.30	144.20	45.80	144.09	38.10	143.96	26.90	143.74
VER	Tay2A	4292.497	423	53.30	144.73	45.80	144.63	38.10	144.54	26.90	144.34
TAY RIVER	Tay2A	4804.420	420	53.30	145.86	45.80	145.84	38.10	145.80	26.90	145.67
ΤA	Tay2A	5380.333	410	53.30	146.75	45.80	146.67	38.10	146.58	26.90	146.28
	Tay2B	23.760	403	37.30	146.76	32.90	146.68	27.30	146.59	17.40	146.29
	Tay2B	122.438	400	37.30	146.81	32.90	146.73	27.30	146.64	17.40	146.40
	Tay2B	460.000	399	37.30	147.60	32.90	147.58	27.30	147.54	17.40	147.41
	Tay2B	659.126	398	37.30	148.92	32.90	148.86	27.30	148.78	17.40	148.59
	Tay2B	671.500		No	onan Side	Road E	Bridge				
	Tay2B	690.395	397	37.30	149.29	32.90	149.19	27.30	149.05	17.40	148.79
	Tay2B	803.688	395	37.30	149.63	32.90	149.55	27.30	149.45	17.40	149.31
	Tay2B	828.899	394wier	37.30	150.35	32.90	150.32	27.30	150.26	17.40	150.15
	Tay2B	841.118	393(fixed weir)	37.30	151.24	32.90	151.22	27.30	151.19	17.40	151.12
	Tay2B	875.467	392	37.30	151.43	32.90	151.40	27.30	151.35	17.40	151.25
	Tay2B	1411.781	390	37.30	152.27	32.90	152.18	27.30	152.05	17.40	151.76
	Tay2B	1467.367	387	37.30	152.54	32.90	152.47	27.30	152.37	17.40	152.18
	Tay2B	1863.693	385	37.30	153.26	32.90	153.21	27.30	153.14	17.40	153.02
	Tay2B	1940.746	383	37.30	153.34	32.90	153.30	27.30	153.25	17.40	153.14
	Tay2B	1956.700		М	einzies M	lonro Br	idge				
	Tay2B	1973.999	382	30.50	153.74	27.10	153.62	23.50	153.50	17.90	153.31
	Tay2B	2044.126	380	30.50	153.83	27.10	153.71	23.50	153.58	17.90	153.38
	Tay2B	2423.260	377	30.50	153.88	27.10	153.77	23.50	153.65	17.90	153.47
	Tay2B	2597.757	376	30.50	153.92	27.10	153.81	23.50	153.70	17.90	153.53
	Tay2B	2625.561	375	30.50	153.93	27.10	153.82	23.50	153.71	17.90	153.54

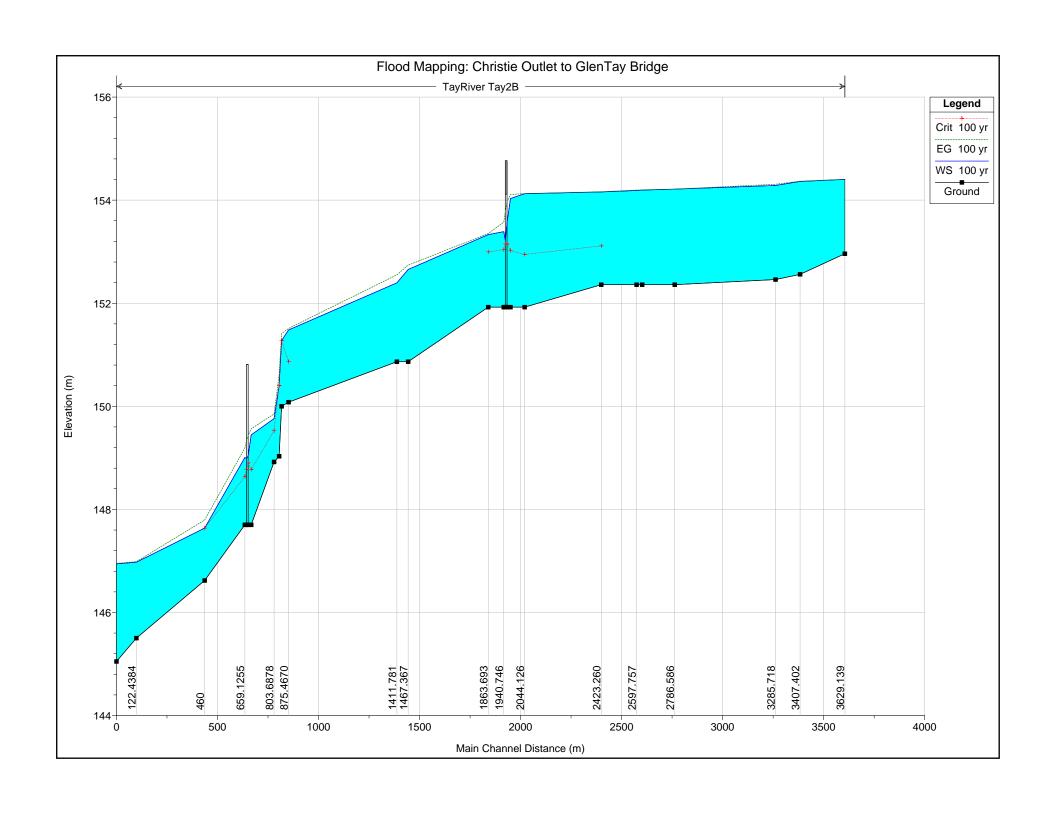
Table 6b Cont'd

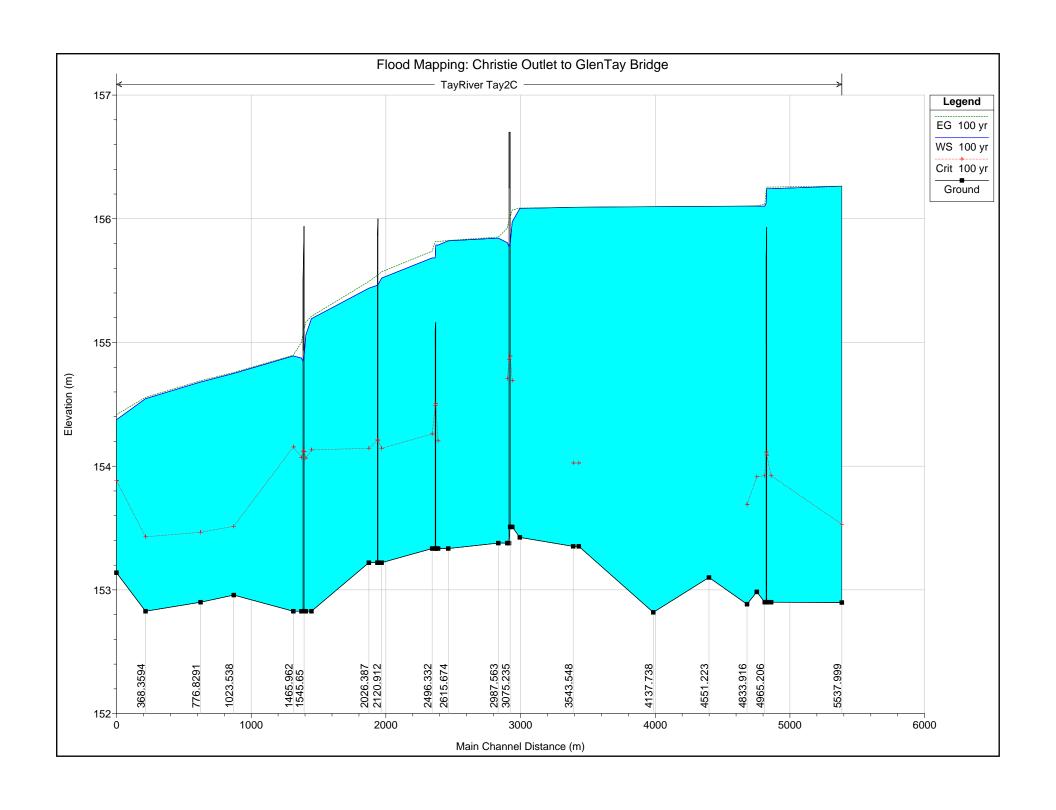
	Tay2B	2786.586	374	30.50	153.95	27.10	153.85	23.50	153.74	17.90	153.56
	Tay2B	3285.718	370	30.50	154.04	27.10	153.93	23.50	153.83	17.90	153.67
	Tay2B	3407.402	365	30.50	154.16	27.10	154.04	23.50	153.93	17.90	153.77
	Tay2B	3629.139	363	30.50	154.22	27.10	154.11	23.50	154.01	17.90	153.84
	Tay2C	152.680	360	43.60	154.19	38.70	154.08	33.50	153.98	25.50	153.80
	Tay2C	368.359	357	43.60	154.39	38.70	154.32	33.50	154.17	25.50	154.02
	Tay2C	776.829	355	43.60	154.53	38.70	154.44	33.50	154.28	25.50	154.11
	Tay2C	1023.538	353	43.60	154.59	38.70	154.50	33.50	154.34	25.50	154.16
	Tay2C	1465.962	350	43.60	154.77	38.70	154.70	33.50	154.59	25.50	154.34
	Tay2C	1526.047	349	43.60	154.78	38.70	154.73	33.50	154.65	25.50	154.41
	Tay2C	1545.650		(Concession	on 2 Bric	lge				
	Tay2C	1558.590	348	43.60	154.90	38.70	154.83	33.50	154.73	25.50	154.48
	Tay2C	1600.361	345	43.60	155.01	38.70	154.91	33.50	154.80	25.50	154.55
	Tay2C	2026.387	340	43.60	155.27	38.70	155.14	33.50	155.02	25.50	154.79
	Tay2C	2093.600		Do	ugal Priv	ate Cros	ssing				
	Tay2C	2120.912	338	43.60	155.33	38.70	155.20	33.50	155.08	25.50	154.85
	Tay2C	2496.332	337	43.60	155.48	38.70	155.34	33.50	155.21	25.50	154.97
	Tay2C	2523.000		Uni	named W	ooden E	ridge				
	Tay2C	2540.370	336	43.60	155.59	38.70	155.46	33.50	155.32	25.50	155.05
	Tay2C	2615.674	335	43.60	155.61	38.70	155.48	33.50	155.35	25.50	155.07
	Tay2C	2987.563	330	43.60	155.63	38.70	155.50	33.50	155.37	25.50	155.11
	Tay2C	3054.625	328	43.60	155.61	38.70	155.49	33.50	155.36	25.50	155.11
	Tay2C	3075.235			Christie L	ake Ro	ad				
	Tay2C	3090.636	327	43.60	155.74	38.70	155.61	33.50	155.47	25.50	155.20
	Tay2C	3147.530	325	43.60	155.83	38.70	155.68	33.50	155.54	25.50	155.25
	Tay2C	3543.548	322	43.60	155.84	38.70	155.69	33.50	155.55	25.50	155.27
	Tay2C	3585.045	321	43.60	155.84	38.70	155.69	33.50	155.55	25.50	155.27
	Tay2C	4137.738	320	43.60	155.84	38.70	155.70	33.50	155.55	25.50	155.27
	Tay2C	4551.223	315	43.60	155.85	38.70	155.70	33.50	155.55	25.50	155.28
	Tay2C	4833.916	310	43.60	155.85	38.70	155.70	33.50	155.56	25.50	155.28
	Tay2C	4906.529	305	43.60	155.85	38.70	155.71	33.50	155.56	25.50	155.28
	Tay2C	4965.206	303	43.60	155.85	38.70	155.71	33.50	155.56	25.50	155.28
	Tay2C	4980.000		Jord	an Cottag	e Road	Bridge				,
	Tay2C	5012.969	300	43.60	155.98	38.70	155.81	33.50	155.64	25.50	155.33
	Tay2C	5537.999	250	43.60	155.99	38.70	155.83	33.50	155.65	25.50	155.34
	Scotts Snye	54.938	900	16.20	146.76	14.10	146.68	12.10	146.58	9.20	146.29
	Scotts Snye	65.900		No	onan Side	Road E	Bridge				,
	Scotts Snye	85.936	899	16.20	146.78	14.10	146.70	12.10	146.60	9.20	146.32
	Scotts Snye	492.922	897	16.20	146.87	14.10	146.78	12.10	146.68	9.20	146.42
уe	Scotts Snye	991.151	895	16.20	146.88	14.10	146.79	12.10	146.69	9.20	146.44
Scotts Snye	Scotts Snye	1432.316	890	16.20	146.89	14.10	146.81	12.10	146.71	9.20	146.48
Scott	Scotts Snye	1718.774	885	16.20	146.91	14.10	146.82	12.10	146.73	9.20	146.51
0)	Scotts Snye	1734.720		В	rady Priva	ate Cros	sing				
	Scotts Snye	1742.916	883	13.60	147.41	11.90	147.21	10.20	146.98	7.80	146.71
	Scotts Snye	1852.837	880	13.60	147.47	11.90	147.27	10.20	147.04	7.80	146.76
	Scotts Snye	2019.013	877	13.60	147.47	11.90	147.27	10.20	147.04	7.80	146.76
	Scotts Snye	2034.000		Upp	er Scotc	h Line C	ulvert				


Table 6b Cont'd


Scotts Snye	2042.292	876	13.60	147.63	11.90	147.45	10.20	147.26	7.80	147.05
Scotts Snye	2074.882	875	13.60	147.65	11.90	147.46	10.20	147.27	7.80	147.06
Scotts Snye	2171.385	870	13.60	147.60	11.90	147.39	10.20	147.29	7.80	147.23
Scotts Snye	2185.500	Morrison Private Crossing								
Scotts Snye	2202.864	867	13.60	147.93	11.90	147.85	10.20	147.77	7.80	147.67
Scotts Snye	2503.605	865	13.60	148.18	11.90	148.10	10.20	148.01	7.80	147.88
Scotts Snye	2547.598	864	13.60	148.18	11.90	148.10	10.20	148.01	7.80	147.89
Scotts Snye	2560.000	Preston Private Crossing								
Scotts Snye	2571.380	863	13.60	148.31	11.90	148.22	10.20	148.12	7.80	147.96
Scotts Snye	2809.062	860	13.60	148.50	11.90	148.41	10.20	148.31	7.80	148.14
Scotts Snye	2835.050	Rathwell Private Crossing								
Scotts Snye	2851.744	857	13.60	150.12	11.90	149.69	10.20	149.48	7.80	149.17
Scotts Snye	2950.574	855	13.60	150.15	11.90	149.72	10.20	149.51	7.80	149.19
Scotts Snye	3102.223	850	13.60	150.15	11.90	149.72	10.20	149.51	7.80	149.20
Scotts Snye	3199.053	840	13.60	150.15	11.90	149.71	10.20	149.48	7.80	149.27
Scotts Snye	3243.152	830	13.60	150.70	11.90	150.66	10.20	150.61	7.80	150.51
Scotts Snye	3507.560	825	13.60	152.67	11.90	152.60	10.20	152.53	7.80	152.41
Scotts Snye	3697.935	822	13.60	153.25	11.90	153.17	10.20	153.09	7.80	152.97
Scotts Snye	3715.000	Upper Scotch Line Culvert								
Scotts Snye	3726.498	820	13.60	153.65	11.90	153.55	10.20	153.45	7.80	153.29
Scotts Snye	4121.302	815	13.60	153.85	11.90	153.75	10.20	153.65	7.80	153.49
Scotts Snye	4621.113	813	13.60	154.15	11.90	154.10	10.20	154.05	7.80	153.99
Scotts Snye	4714.170	810	13.60	154.24	11.90	154.21	10.20	154.17	7.80	154.12


Appendix A HEC-RAS Model Output


Longitudinal Profiles


Cross-Sections

