APPENDIX A

Single Station Frequency Analysis

- Convert maximum daily flows to maximum instantaneous peak flows
- List maximum insantaneous peak flows
- Test for data validity
- Summary of statistics from various distributions
- Summary of previous analysis

Jock River Flood Risk Mapping (within the City of Ottawa) Hydrology Report – July 2004

Page A2

The 34 years of maximum instantaneous peak flows, as derived from Water Survey of Canada records, will provide a reliable estimate of the 100 year peak flow on the Jock River at Moodie Drive. Single Station Frequency Analysis assumes that the maximum instantaneous peak flows are independent random events from a homogeneous population: in other words, the annual flood peak maxima are the result of a single set of annual, flood-causative mechanisms that vary only in their magnitude.

For the Jock River, the peak flows are from a homogenous dataset in that: all maximum peaks occurred during the Springmelt; there is no significant change in land use over the period of record; and the system is unregulated ie. there are no manmade reservoirs with significant storage or significant intakes that would affect the peak flows. Also, the record length is greater than 1/3 the Return Period flow being estimated which adds confidence to the statistical estimate.

The record at the gauge is provided in Table A1a while the maximum instantaneous peak flows are provided in Table A1b: this table has been supplemented by converting maximum daily flows to maximum instantaneous, where required, using a derived factor of 1.03 and using additional, unpublished data, provisional data from 1997, 2001, 2002 and 2003. The derivation of the appropriate factor and its application to maximum daily flows is provided in Tables A1c and A1d, respectively.

The Consolidated Frequency Analysis (CFA) program (version 3.1), distributed by Environment Canada, was used to fit the data, using statistical analysis, to four different statistical distributions. Initially the 34 peak flows were tested using tests, as follows, in order to confirm their validity. The results are summarised in Table A1e and discussed below :

The Spearman test for **independence** suggests that the data does not display serial dependence. Analysis produced a student T value of 1.475 which is less than the critical T values of 1.696 and 2.454, at 5% and 1%, confidence levels respectively.

The Spearman test for **trend** suggests there may be a trend: but, if there is one, it is not highly significant. Analysis produced a student T value of 2.639 which is greater than the critical T value of 2.038 at a 5% confidence level but less than the critical T value of 2.741 at a 1% confidence level..... As a result, the data and the watershed characteristics over the past 34 years were reviewed with respect to any significant changes in the watershed land use, potential river operations and spring precipitation characteristics that might cause a change in annual flood peak maxima: none were identified and it was considered appropriate to continue with SSFA. The plot of annual peak flows is provided in Figure A1.

The Run test for **randomness** suggests that the sample is significantly random. Analysis produced a RUNAB value of 12 which lies between the values of 12 and 24 at a 5% confidence level.

With the dataset being acceptable, two of the four distributions were more closely examined: the Three Parameter Lognormal (3PLN) and the Log Pearson3 (LP3). The former is recommended for Ontario by MNR (Floodplain Management in Ontario – Technical

Jock River Flood Risk Mapping (within the City of Ottawa) Hydrology Report – July 2004

Guidelines – 1985) if the statistical values of skew and kurtosis are close to 0.0 and 3.0 respectively; if the skew is negative, an LP3 distribution is recommended. The latter is obligatory for all Federal Agencies in the USA (Alexander - 2002).

Results are provided, in detail, in Table A2 and Table A3 for 3PLN and LP3 respectively and plots of the distribution are provided in Figures A2(a) and A2(b). The results clearly suggest using the estimates provided by the LP3 distribution, due to negative skew and and a Kurtosis value of 1.8 for the3PLN distribution; additional confidence can be gained by the wide acceptance of this distribution in the US. A summary of Return Period Flows by SSFA distribution is provided in Table A4.

The results of previous studies of 100 year peak flows in the Jock River subwatershed, at the Moodie Drive gauge, are provided, below, for comparison purpose:

SSFA (2004)	196 m3/s	(LP3)
SSFA (1995-JL Richards)	173 m3/s	(3PLN)
Regional Frequency Analysis (1995-JL RIchards)	194 m3/s	
Regional Frequency Analysis (Acres –1981)	187 m3/s	
Regional Frequency Analysis – Regression Factors	185 m3/s	
Index Flood – Region 1	143 m3/s	
Index Flood – Region 2	366 m3/s	
MTO Watershed Classification Method	140 m3/s	

In order to identify any influence from the four years of provisional data, data from 1997, 2001, 2002, 2003 was removed and SSFA was applied to the 30 year dataset. A summary of the results are provided in Table A4 and detailed in Table A5: the results suggest that, for the LP3 distribution, the inclusion of the provisional data has negligible effect on the resulting flow estimates.

Table Ala-

Maximum observed peak flows - Spring WSC Gauge – Moodie Drive

Extreme Report

.

Page No. 1

Canadian Hydrological Data (c)1997 Environment Canada Station : 02LA007 JOCK RIVER NEAR RICHMOND Prov-Terr-State : ON Latitude:45°15°0°N Longitude:75°47'28°W Region : Burlington Drainage Area (km²): 559(G),------(E) Parameter : Flow

1970	125 22:4	0 ES	ADC	14		121	Арг	14		0.057	Aug	27	
1971	116 23:3	ΟĒS	Apr	ī9		112	Apr	19		0.045	Aug	13	
1972		-	'			136B	Apr	19		0.413	Sep	25	
1973						119B	Mar	18		0.085	Sep	03	
1974						79.3B	Mar	08		0.031	Sep	25	
1975	123 05:5	5 ES	Apr	20		122	Apr	20		0.034	Aug	12	
1976	140 18:0	6 ES	Apr	01		137	Apr	01		0.252	Aug	07	
.977		• • •				1178	Mar	15		0.031	Sep	11	
1978	148B22:0	O ES	Арг	14		133B	Apr	14		0.031	AUG	10	
1979						1148	маг	25		0.031	101	23	
1980						1038	Mar	22		0.050	Aug	26	
.981	111B09:5	O ES	Feb	24		1088	Feb	24		0.612	Aug	30	
982						/5.58	Apr	01		0.072	Aug	22	
1983	130 13.3	7 66		<u>06</u>		49.08	Mar	20		0.0146	Sep	21	
.984	120 12:2	/ 25	Арг	00		110	Арг	00		0.040	Seb	61	
.985						59.18	Mar	15		0.012	Sep	13	
986	65.0 17:0	0 ES	Мау	23		62.0	May	24		0.6068	Mar	03	
.987	80.9 20:2	0 ES	Mar	26		79.2	Mar	26		0.239	Sep	07	
.988	64.8 17:2	5 ES	Mar	27		63.1	Mar	27		0.040	Sep	29	
1989						63.68	Mar	29		0.058	Sep	14	
1990						65.9B	Mar	18		0.120	Jul	19	
1991	82.8 14:2	1 ES	Арг	10		78.8	Apr	10		0.017	Sep	09	
1992	74.0 20:1	2 ES	Apr	08		72.2	Арг	08		0.302	Jun	18	
1993	145 10:3	8 ES	Арг	11		142	Apr	11		0.180	Sep	22	
.994	67.5 02:4	7 ES	Арг	11		66.2	Арг	11		0.355	Sep	25	
1995	55.6 10:0	0 ES	Jan	17		54.9B	Jan	17		0.119	วนไ	14	
1996						50.OB	Feb	25		0.028	Sep	04	
1997		•				124			-	0.035	Aug	12	
1998	126 21:0	0 ES 0 FS	Mar Anr	29 08		135	Mar Abr	08		0.010	Aua	30	-
	100 00.00	0				44 7	rah	70		0 2020	Cab	00	
2000	45.5 02:3	UES	FeD	28		44.7	Feb	20		0.2028	reo	00	
2000 A - Manual D - Dry	45.5 02:3	UES	Feb	28	8 - E -	44.7 Ice Cond Estimate	Feb litions	28		U.282B	reb	US	

P - Partially Dry
A - Manual Gauge
B - Dry
R - Revised within the last two years
* - Asterik-occurs more than once
P - Partially Dry

Project 411-02 Prep for: JFSA Inc.

Preparation of a ratio of Instantaneous Daily Qp to Maximum Daily Qp Ratio Definition

			Ratio 2003 I MAX	Ratio HYDAT
Year	I_MAX	D_MAX	/ D_MAX	I_MAX/D_MAX
1970	125.0	121.0	1.03	1.03
1971	116.0	112.0	1.04	1.04
1972		136.0		
1973		119.0		
1974		79.3	······································	
1975	123.0	122.0	1.01	1.01
1976	140.0	137.0	1.02	1.02
1977		117.0		
1978	148.0	133.0	1.11	1.11
1979		114.0	· · · · · · · · · · · · · · · · · · ·	
1980		103.0		
1981	111.0	108.0	1.03	1.03
1982		75.5		
1983		49.8		
1984	120.0	118.0	1.02	1.02
1985		59.1		
1986	65.0	62.0	1.05	1.05
1987	80.9	79.2	1.02	1.02
1988	64.8	63.1	1.03	1.03
1989		63.6		
1990		65.9		
1991	82.8	78.8	1.05	1.05
1992	74.0	72.2	1.02	1.02
1993	145.0	142.0	1.02	1.02
1994	67.5	66.2	1.02	1.02
1995	55.6	54.9	1.01	1.01
1996		50.0		
1997*	127.0	125.0	1.02	
1998	126.0	124.0	1.02	1.02
1999	136.0	135.0	1.01	1.01
2000	46.5	44.7	1.04	1.04
2001*	113.0	107.0	1.06	
2002*	44.2	41.6	1.06	
2003*	62.0	57.4	1.08	
Average			1.03	1.03

NOTE

All data provided by HYDAT, Environment Canada, except when indicated otherwise

Ratio HYDAT was calculated only with the official data available from HYDAT

I_MAX = instantaneous peak flow

D_MAX = Daily maximum peak flow

* Data provided by RVCA - not official yet.

JR Ratios of Daily vs Max Qp.xls: Ratio Definition 2003

Project 411-02	Date:	April 2, 2003
Prep for: JFSA Inc.	Updated:	February 26, 2004
		Prep by: JoF

			I_MAX x Ratio	I_MAX x Ratio				
ID	Year	I_MAX	2003	HYDAT	HH:MM	MM-DD	D_MAX	MM-DD
02LA007	1970	125.0	125.0	125.0	22:40	0414	121.0	0414
02LA007	1971	116.0	116.0	116.0	23:30	0419	112.0	0419
02LA007	1972		140.7	140.2			136.0	0419
02LA007	1973		123.1	122.7			119.0	0318
02LA007	1974		82.0	81.8			79.3	0308
02LA007	1975	123.0	123.0	123.0	5:55	0420	122.0	0420
02LA007	1976	140.0	140.0	140.0	18:06	0401	137.0	0401
02LA007	1977		121.0	120.6			117.0	0315
02LA007	1978	148.0	148.0	148.0	22:00	0414	133.0	0414
02LA007	1979		117.9	117.6			114.0	0325
02LA007	1980		106.6	106.2			103.0	0322
02LA007	1981	111.0	111.0	111.0	9:50	0224	108.0	0224
02LA007	1982		78.1	77.9			75.5	0401
02LA007	1983		51.5	51.4			49.8	0320
02LA007	1984	120.0	120.0	120.0	12:27	0406	118.0	0406
02LA007	1985		61.1	60.9			59.1	0315
02LA007	1986	65.0	65.0	65.0	17:00	0523	62.0	0524
02LA007	1987	80.9	80.9	80.9	20:20	0326	79.2	0326
02LA007	1988	64.8	64.8	64.8	17:25	0327	63.1	0327
02LA007	1989		65.8	65.6			63.6	0329
02LA007	1990		68.2	68.0			65.9	0318
02LA007	1991	82.8	82.8	82.8	14:21	0410	78.8	0410
02LA007	1992	74.0	74.0	74.0	20:12	0408	72.2	0408
02LA007	1993	145.0	145.0	145.0	10:38	0411	142.0	0411
02LA007	1994	67.5	67.5	67.5	2:47	0411	66.2	0411
02LA007	1995	55.6	55.6	55.6	10:00	0117	54.9	0117
02LA007	1996		51.7	51.6			50.0	0225
02LA007	1997*	127.0	127.0			0408	125.0	0407
02LA007	1998	126.0	126.0	126.0	21:00	0329	124.0	0331
02LA007	1999	136.0	136.0	136.0	7:00	0408	135.0	0408
02LA007	2000	46.5	46.5	46.5	2:30	0228	44.7	0228
02LA007	2001*	113.0	113.0				107.0	
02LA007	2002*	44.2	44.2				41.6	
02LA007	2003*	62.0	62.0				57.4	
	MAX	148.0	148.0	148.0			142.0	
	MIN	44.2	44.2	46.5			41.6	
	AVG	98.8	95.3	96.4			92.2	

Calculated I_MAX with ratio (1.03) of Instantaneous Daily Qp to Daily Maximum Qp

NOTES

I_MAX = Instantaneous peak flow

D_MAX = Daily Maximum peak flow

Ratio = I_MAX / D_MAX (see Ratio Definition page)

* Data provided by RVCA - not official yet.

JR Ratios of Daily vs Max Qp.xls: I-Max Calculation 2003

Table A1c - Apply Qp(imax)/Qp(dmax) ratio to Qp(dmax)

Table A1d –Maximum instantaneous peak flows – Spring
WSC Gauge - Moodie Drive

Jock2

Number of occurences < 5

WSC STATION NO=02LA007 WSC STATION NAME=Jock River near Richmond _____

MONTH	YEAR	DATA	ORDERED	RANK	PROB.	RET. PERIOD
(1)	(2)	(3)	(4)	(5)	(6)	(7)
					(%)	(YEARS)
4	1970	125.000	148.000	1	1.75	57.000
4	1971	116.000	145.000	2	4.68	21.375
4	1972	140.100	140.100	3	7.60	13.154
3	1973	122.500	140.000	4	10.53	9.500
3	1974	81.600	136.000	5	13.45	7.435
4	1975	123.000	127.000	6	16.37	6.107
4	1976	140.000	126.000	7	19.30	5.182
3	1977	120.500	125.000	8	22.22	4.500
4	1978	148.000	123.000	9	25.15	3.977
3	1979	117.400	122.500	10	28.07	3.563
3	1980	106.000	120.500	11	30.99	3.226
2	1981	111.000	120.000	12	33.92	2.948
4	1982	77.700	117.400	13	36.84	2.714
3	1983	51.300	116.000	14	39.77	2.515
4	1984	120.000	113.000	15	42.69	2.342
3	1985	60.800	111.000	16	45.61	2.192
5	1986	65.000	106.000	17	48.54	2.060
3	1987	80.900	82.800	18	51.46	1.943
3	1988	64.800	81.600	19	54.39	1.839
3	1989	65.500	80.900	20	57.31	1.745
3	1990	67.800	77.700	21	60.23	1.660
4	1991	82.800	74.000	22	63.16	1.583
4	1992	74.000	67.800	23	66.08	1.513
4	1993	145.000	67.500	24	69.01	1.449
4	1994	67.500	65.500	25	71.93	1.390
1	1995	55.600	65.000	26	74.85	1.336
2	1996	51.500	64.800	27	77.78	1.286
4	1997	127.000	62.000	28	80.70	1.239
3	1998	126.000	60.800	29	83.63	1.196
4	1999	136.000	55.600	30	86.55	1.155
2	2000	46.500	51.500	31	89.47	1.118
4	2001	113.000	51.300	32	92.40	1.082
4	2002	44.200	46.500	33	95.32	1.049
3	2003	62 000	44 200	34	08 25	1 019

--- SPEARMAN TEST FOR INDEPENDENCE ---

02LA007 Jock River near Richmond ANNUAL MAXIMUM DAILY FLOW SERIES 1970 TO 2003 DRAINAGE AREA = 559.0000

SPEARMAN RANK ORDER SERIAL CORRELATION COEFF = .256D.F.= 31CORRESPONDS TO STUDENTS T = 1.475CRITICAL T VALUE AT 5% LEVEL = 1.696NOT SIGNIFICANT---1% -= 2.454NOT SIGNIFICANT

Interpretation: The null hypothesis is that the correlation is zero.

At the 5% level of significance, the correlation is not significantly different from zero. That is, the data do not display significant serial dependence.

--- SPEARMAN TEST FOR TREND ---

02LA007 Jock River near Richmond ANNUAL MAXIMUM DAILY FLOW SERIES 1970 TO 2003 DRAINAGE AREA = 559.0000

SPEARMAN RANK ORDER CORRELATION COEFF = .423D.F.= 32CORRESPONDS TO STUDENTS T = 2.639CRITICAL T VALUE AT 5% LEVEL = 2.038SIGNIFICANT- - 1% - = 2.741NOT SIGNIFICANT

Interpretation: The null hypothesis is that the serial (lag-one) correlation is zero.

At the 5% level of significance, the correlation is significantly different from zero, but is not so at the 1% level of significance. That is, the trend is significant but not highly so.

--- RUN TEST FOR GENERAL RANDOMNESS ---

O2LA007 Jock River near Richmond
ANNUAL MAXIMUM DAILY FLOW SERIES 1970 TO 2003 DRAINAGE AREA = 559.0000
THE NUMBER OF RUNS ABOVE AND BELOW THE MEDIAN (RUNAB) = 12 THE NUMBER OF OBSERVATIONS ABOVE THE MEDIAN(N1) = 17 THE NUMBER OF OBSERVATIONS BELOW THE MEDIAN(N2) = 17
Range at 5% level of significance: 12. to 24. NOT SIGNIFICANT
Interpretation: The null hypothesis is that the data are random.
At the 5% level of significance, the null hypothesis cannot be rejected. That is, the sample is significantly random.

Discyste

Table A2 –SSFA – 3PLN Maximum instantaneous peak flows – Spring

FREQUENCY ANALYSIS - THREE-PARAMETER LOGNORMAL DISTRIBUTION 02LA007 Jock River near Richmond

SAMPLE STATISTICS

	MEAN	S.D.	c.v.	c.s.	C.K.
X SERIES	95.176	33.205	. 349	.011	1.761
LN X SERIES	4.491	.375	.084	304	1.961
LN(X-A) SERIES	6.770	.038	.006	020	1.758
X (MIN) = 4	4.200		TOT	AL SAMPLE S	IZE= 34
X(MAX) = 14	8.000		NO. O	F LOW OUTLI	ERS= 0
LOWER OUTLIER	LIMIT OF X=	33,401	NO.	OF ZERO FL	OWS= 0

.

...

-

-

Į

SOLUTION OBTAINED VIA MAXIMUM LIKELIHOOD

3LN PARAMETERS: A= -776.566 M= 6.770 S= .038

FLOOD FREQUENCY REGIME

RETURN	EXCEEDANCE	FLOOD
PERIOD	PROBABILITY	

1.003	.997	7.91
1.050	.952	40.9
1.250	.800	67.1
2.000	.500	94.6
5.000	.200	123
10.000	.100	138
20.000	.050	151
50.000	.020	166
100.000	.010	175
200.000	.005	184
500.000	.002	196

FREQUENCY ANALYSIS - LOG PEARSON TYPE III DISTRIBUTION 02LA007 Jock River near Richmond

SAMPLE STATISTICS

LN 2	X	SERIES SERIES	м 95 4	EAN .176 .491		S.D. 33.205 .375	C.V. .349 .084		C.S. .011 304	C 1. 1.	.K. 761 961
X (M) X (M) LOWI	IN AX ER) =) = 1 OUTLIE	44.200 48.000 R LIMI	t of	X=	33.401	NC	TOTAL S . OF LO NO. OF	SAMPLE OW OUTI ZERO F	SIZE= LIERS= LOWS=	34 0 0

SOLUTION OBTAINED VIA MOMENTS

	DISTRIBUTION IS UPPER BOUNDED A	T M=	1055.	
LP3	PARAMETERS: A=5705E-01 B= 43.31	I	.OG (M) =	6.961
			M =	1055.

FLOOD FREQUENCY REGIME

RETURN	EXCEEDANCE	FLOOD
PERIOD	PROBABILITY	
1.003	.997	28.0
1.050	.952	46.2
1.250	.800	65.5
2.000	.500	90.9
5.000	.200	123
10.000	.100	142
20.000	.050	160
50.000	.020	181
100.000	.010	196
200.000	.005	211
500.000	, .002	229

~

Figure A2(a) – 3PLN – distribution plot – Spring – Moodie Drive

Figure A2(b) – LP3 – distribution plot – Spring – Moodie Drive

Table A4: Summary SSFA Results - Maximium Instantaneous Peak Flows (m3/s)								
Frequency Distribution =>	GEV	GEV	3PLN	3PLN	LP3	LP3	Wakeby	Wakeby
Years of record =>	34	30	34	30	34	30	34	30
Return Period								
(years)								
1.003	8	11	8	19	28	30	46	48
1.05	40	42	42	46	46	48	49	51
1.25	67	68	68	69	66	67	60	62
2	95	96	95	94	91	92	85	86
5	124	125	123	123	123	124	117	117
10	139	140	138	139	142	143	131	131
20	151	151	150	153	160	160	140	140
50	163	164	166	170	181	181	148	147
100	170	171	175	182	196	197	152	151
200			184	192	211	211		
500			196	206	229	230		

WSC	STATION	NO=02LA007
WSC	STATION	NAME=Jock River near Richmond

TOTAL TIME SPAN, YT= 30 YRS. FLOW THRESHOLD = 46.500 OBSERVED PEAKS, N= 30 HISTORIC PEAKS ABOVE THRESHOLD, NHA= 0

		OBSERVED	PEAKS ABOVE	THRESHOLD.	NA= 30		
		OBSERVED	PEAKS BELOW	THRESHOLD.	NB= 0		
		MISSING	PEAKS BELOW	THRESHOLD.	NC= 0		
		MIJJING		nadone bey			
MONTH	YEAR	FLOOD	DESCENDIN	G RANK	RANK	CUM.	RET.PERIOD
			ORDER	м	ADJ.	PROB.	YEARS
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
4	1970	125.000	148.000	1	1.00	1.99	50.33
4	1971	116.000	145.000	2	2.00	5.30	18.88
4	1972	140.200	140.200	3	3.00	8.61	11.62
3	1973	122.700	140.000	4	4.00	11.92	8.39
3	1974	81.800	136.000	5	5.00	15.23	6.57
4	1975	123.000	126.000	6	6.00	18.54	5.39
4	1976	140.000	125.000	7	7.00	21.85	4.58
3	1977	120.600	123.000	8	8.00	25.17	3.97
4	1978	148.000	122.700	9	9.00	28.48	3.51
3	1979	117.600	120.600	10	10.00	31.79	3.15
3	1980	106.200	120.000	11	11.00	35.10	2.85
2	1981	111.000	117.600	12	12.00	38.41	2.60
- 4	1982	77.900	116.000	13	13.00	41.72	2.40
3	1983	51.400	111.000	14	14.00	45.03	2.22
4	1984	120.000	106.200	15	15.00	48.34	2.07
3	1985	60.900	82.800	16	16.00	51.66	1.94
5	1986	65.000	81.800	17	17.00	54.97	1.82
3	1987	80.900	80.900	18	18.00	58.28	1.72
3	1988	64.800	77.900	19	19.00	61.59	1.62
3	1989	65.600	74.000	20	20.00	64.90	1.54
3	1990	68.000	68.000	21	21.00	68.21	1.47
4	1991	82.800	67.500	22	22.00	71.52	1.40
4	1992	74.000	65.600	23	23.00	74.83	1.34
4	1993	145.000	65.000	24	24.00	78.15	1.28
4	1994	67.500	64.800	25	25.00	81.46	1.23
1	1995	55.600	60.900	26	26.00	84.77	1.18
2	1996	51.600	55.600	27	27.00	88.08	1.14
3	1998	126.000	51.600	28	28.00	91.39	1.09
4	1999	136.000	51.400	29	29.00	94.70	1.06
2	2000	46.500	46.500	30	30.00	98.01	1.02

THRESHOLD

HISTORICAL 02LA007	FREQUENCY ANALYSIS - THREE-PARAMETER LOGNORMAL DISTRIBUTION Jock River near Richmond

SAMPLE STATISTICS	5
-------------------	---

X SERIES LN X SERIES LN (X-A) SERIES	MEAN 96.387 4.507 5.550	S.D. 32.850 .363 .128	C.V. .341 .081 .023	C.S. .035 266 066	C.K. 1.796 1.960 1.800
X(MIN) = 4	6.500	35.718	TOT.	AL SAMPLE S	IZE= 30
X(MAX) = 14	8.000		NO. O.	F LOW OUTLI	ERS= 0
LOWER OUTLIER	LIMIT OF X=		NO.	OF ZERO FL	OWS= 0

SOLUTION OBTAINED VIA MAXIMUM LIKELIHOOD

3LN	PARAMETERS:	A=	-162.882	M= 5.550	S=	.125
JPW	FARAFILIERS:	A=	-162.882	M= 5.550	S=	.125

FLOOD FREQUENCY REGIME

RETURN PER IOD	EXCEEDANCE PROBABILITY	FLOOD
1.003	. 997	19.3
1.050	.952	45.8
1.250	.800	68.6
2.000	. 500	94.4
5.000	.200	123
10.000	.100	139
20.000	.050	153
50.000	.020	170
100.000	.010	182
200.000	.005	192
500.000	.002	206

HISTORICAL FREQUENCY ANALYSIS - LOG PEARSON TYPE III DISTRIBUTION 02LA007 Jock River near Richmond

		SAMPLE STAT	ISTICS		
	MEAN	S.D.	c.v.	c.s.	с.к.
X SERIES	96.387	32.850	. 341	.035	1.796
LN X SERIES	4.507	.363	.081	266	1.960
X(MIN) = 40	6.500		тот	AL SAMPLE S	IZE= 30
X (MAX) = 148	8.000		NO. C	F LOW OUTLI	ERS= 0
LOWER OUTLIER	LIMIT OF X	- 35.718	NO.	OF ZERO FL	OWS= 0

SOLUTION OBTAINED VIA MOMENTS

	DISTRIBUTI	ON IS UPP	ER BOUNDE	DAT M-	1389.	
LP3	PARAMETERS: A=	4841E-0	1 B= 56.	37	LOG (M) =	7.236
					M =	1389.

	FLOOD FREQUENCY	REGIME	
RETURN	EXCEEDANCE		FLOOD
PERIOD	PROBABILITY		
1.003	. 997		30.0
1.050	.952		48.1
1.250	.800		67.2
2.000	.500		92.1
5.000	.200		124
10.000	.100		143
20.000	.050		160
50.000	.020		181
100.000	.010		197
200.000	.005		211
500.000	.002		230